98%
921
2 minutes
20
Using -isopropyl acrylamide (NIPAM) as the main monomer, 1-vinyl imidazole (VIM) containing tertiary amine groups as the functional comonomer, and 1,5-dibromo pentane as the crosslinking agent, ionic P(NIPAM--VIM) microgels were prepared by a two-step method. The crosslinking agent was reacted with tertiary amino groups by the quaternary amination. The results of zeta potential and particle size analysis showed that P(NIPAM--VIM) microgels were positively charged and had a particle size of about 400 nm, and the microgels with 11 wt% VIM still showed temperature sensitivity with a volume phase transition temperature of approximately 37.5 °C. The effects of VIM content, ambient temperature, and pH on the adsorption properties of the microgels for phosphate anions were explored. The self-assembly of the positively charged P(NIPAM--VIM) microgels with polyelectrolytes and the adsorption behavior of the layers for phosphate anions were studied using a quartz crystal microbalance (QCM). It was found that at a phosphate concentration of 0.3 mg mL, VIM mass fraction of 11%, pH of 5, and temperature of 20 °C, the largest adsorption capacity of P(NIPAM--VIM) microgel on phosphate ions could reach 346.3 mg g. The frequency responses of the microgel-modified QCM sensor could reach 3.0, 18.8, and 25.9 Hz when exposed to 10, 10, and 10 M phosphate solutions. Therefore, the ionic (PNIPAM--VIM) microgels could be promising for fabricating anion-binding materials for separation and sensing applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871875 | PMC |
http://dx.doi.org/10.1039/d2ra06678e | DOI Listing |
Food Chem
September 2025
State Key Laboratory of Meat Quality Control and Cultured Meat Development; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
At moderate protein concentrations (10, 20 mg/mL) and a high temperature (80 °C), meat protein (MP) self-assembled into weak gels and then intriguingly collapsed into microgels through continuous heating and annealing cooling, resulting in a sol state with exposed hydrophobic groups and disulfide bonds. The different prepared microgel groups were labeled as MP and MP, respectively. Compared with the control group (Con: 7.
View Article and Find Full Text PDFAngiogenesis
September 2025
Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihta, Bihar 801106, India.
Development of suitable carbohydrate-decorated, biocompatible, and stimuli-responsive fluorescent microgels that can selectively bind and detect proteins (such as lectins) is an important research topic. Herein, we report the development of mannose-decorated, dual-stimuli (temperature and pH)-responsive fluorescent poly(aminoamide) microgels, which can selectively bind to and thereby detect the presence of concanavalin A (Con A). The resultant stimuli-responsive microgels have a lower critical solution temperature (VPTT) of 37.
View Article and Find Full Text PDFInt J Pharm
September 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit
Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.
View Article and Find Full Text PDF