Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

State-of-the-art (SOTA) convolutional neural network models have been widely adapted in medical imaging and applied to address different clinical problems. However, the complexity and scale of such models may not be justified in medical imaging and subject to the available resource budget. Further increasing the number of representative feature maps for the classification task decreases the model explainability. The current data normalization practice is fixed prior to model development and discounting the specification of the data domain. Acknowledging these issues, the current work proposed a new scalable model family called PlexusNet; the block architecture and model scaling by the network's depth, width, and branch regulate PlexusNet's architecture. The efficient computation costs outlined the dimensions of PlexusNet scaling and design. PlexusNet includes a new learnable data normalization algorithm for better data generalization. We applied a simple yet effective neural architecture search to design PlexusNet tailored to five clinical classification problems that achieve a performance noninferior to the SOTA models ResNet-18 and EfficientNet B0/1. It also does so with lower parameter capacity and representative feature maps in ten-fold ranges than the smallest SOTA models with comparable performance. The visualization of representative features revealed distinguishable clusters associated with categories based on latent features generated by PlexusNet. The package and source code are at https://github.com/oeminaga/PlexusNet.git.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.106594DOI Listing

Publication Analysis

Top Keywords

neural network
8
medical imaging
8
representative feature
8
feature maps
8
data normalization
8
design plexusnet
8
sota models
8
plexusnet
6
plexusnet neural
4
network architectural
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF

Phenotype-driven approaches identify disease-counteracting compounds by analysing the phenotypic signatures that distinguish diseased from healthy states. Here we introduce PDGrapher, a causally inspired graph neural network model that predicts combinatorial perturbagens (sets of therapeutic targets) capable of reversing disease phenotypes. Unlike methods that learn how perturbations alter phenotypes, PDGrapher solves the inverse problem and predicts the perturbagens needed to achieve a desired response by embedding disease cell states into networks, learning a latent representation of these states, and identifying optimal combinatorial perturbations.

View Article and Find Full Text PDF

Machine Learning-Aided Screening and Design Rule Discovery for LWIR-Transparent Optical Materials.

J Chem Inf Model

September 2025

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.

The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.

View Article and Find Full Text PDF