Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Venous thromboembolism (VTE) and major bleeding (MBE) are feared complications that are influenced by numerous host and surgical related factors. Using machine learning on contemporary data, our aim was to develop and validate a practical, easy-to-use algorithm to predict risk for VTE and MBE following total joint arthroplasty (TJA). This was a single institutional study of 35,963 primary and revision total hip (THA) and knee arthroplasty (TKA) patients operated between 2009 and 2020. Fifty-six variables related to demographics, comorbidities, operative factors as well as chemoprophylaxis were included in the analysis. The cohort was divided to training (70%) and test (30%) sets. Four machine learning models were developed for each of the outcomes assessed (VTE and MBE). Models were created for all VTE grouped together as well as for pulmonary emboli (PE) and deep vein thrombosis (DVT) individually to examine the need for distinct algorithms. For each outcome, the model that best performed using repeated cross validation was chosen for algorithm development, and predicted versus observed incidences were evaluated. Of the 35,963 patients included, 308 (0.86%) developed VTE (170 PE's, 176 DVT's) and 293 (0.81%) developed MBE. Separate models were created for PE and DVT as they were found to outperform the prediction of VTE. Gradient boosting trees had the highest performance for both PE (AUC-ROC 0.774 [SD 0.055]) and DVT (AUC-ROC 0.759 [SD 0.039]). For MBE, least absolute shrinkage and selection operator (Lasso) analysis had the highest AUC (AUC-ROC 0.803 [SD 0.035]). An algorithm that provides the probability for PE, DVT and MBE for each specific patient was created. All 3 algorithms had good discriminatory capability and cross-validation showed similar probabilities comparing predicted and observed failures indicating high accuracy of the model. We successfully developed and validated an easy-to-use algorithm that accurately predicts VTE and MBE following TJA. This tool can be used in every-day clinical decision making and patient counseling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905066PMC
http://dx.doi.org/10.1038/s41598-022-26032-1DOI Listing

Publication Analysis

Top Keywords

machine learning
12
vte mbe
12
venous thromboembolism
8
major bleeding
8
total joint
8
joint arthroplasty
8
easy-to-use algorithm
8
models created
8
vte
7
mbe
7

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF