98%
921
2 minutes
20
The sparse nature of single-cell omics data makes it challenging to dissect the wiring and rewiring of the transcriptional and signaling drivers that regulate cellular states. Many of the drivers, referred to as "hidden drivers", are difficult to identify via conventional expression analysis due to low expression and inconsistency between RNA and protein activity caused by post-translational and other modifications. To address this issue, we developed scMINER, a mutual information (MI)-based computational framework for unsupervised clustering analysis and cell-type specific inference of intracellular networks, hidden drivers and network rewiring from single-cell RNA-seq data. We designed scMINER to capture nonlinear cell-cell and gene-gene relationships and infer driver activities. Systematic benchmarking showed that scMINER outperforms popular single-cell clustering algorithms, especially in distinguishing similar cell types. With respect to network inference, scMINER does not rely on the binding motifs which are available for a limited set of transcription factors, therefore scMINER can provide quantitative activity assessment for more than 6,000 transcription and signaling drivers from a scRNA-seq experiment. As demonstrations, we used scMINER to expose hidden transcription and signaling drivers and dissect their regulon rewiring in immune cell heterogeneity, lineage differentiation, and tissue specification. Overall, activity-based scMINER is a widely applicable, highly accurate, reproducible and scalable method for inferring cellular transcriptional and signaling networks in each cell state from scRNA-seq data. The scMINER software is publicly accessible via: https://github.com/jyyulab/scMINER.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901036 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-2476875/v1 | DOI Listing |
Nat Cell Biol
September 2025
Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.
View Article and Find Full Text PDFAm J Hum Genet
September 2025
Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Fulham Road, London, UK. Electronic address:
Multiplex assays of variant effect (MAVEs) provide promising new sources of functional evidence, potentially empowering improved classification of germline genomic variants, particularly rare missense variants, which are commonly assigned as variants of uncertain significance (VUSs). However, paradoxically, quantification of clinically applicable evidence strengths for MAVEs requires construction of "truthsets" comprising missense variants already robustly classified as pathogenic and benign. In this study, we demonstrate how benign truthset size is the primary driver of applicable functional evidence toward pathogenicity (PS3).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).
View Article and Find Full Text PDFPLOS Glob Public Health
September 2025
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
Built environment surveillance has shown promise for monitoring COVID-19 burden at granular geographic scales, but its utility for surveillance across larger areas and populations is unknown. Our study aims to evaluate the role of built environment detection of SARS-CoV-2 for the surveillance of COVID-19 across broad geographies and populations. We conducted a prospective city-wide sampling study to examine the relationship between SARS-CoV-2 on floors and COVID-19 burden.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Resea
TP53 mutations are highly associated with hepatocellular carcinoma (HCC), a common and deadly cancer. However, few primary drivers in the progression of HCC with mutant TP53 have been identified. To uncover tumor suppressors in human HCC, a genome-wide CRISPR/Cas9-based screening of primary human hepatocytes with MYC and TP53 overexpression (MT-PHHs) is performed in xenografts.
View Article and Find Full Text PDF