Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Development and deployment of high-yielding maize varieties with native resistance to Fall armyworm (FAW), turcicum leaf blight (TLB), and gray leaf spot (GLS) infestation is critical for addressing the food insecurity in sub-Saharan Africa. The objectives of this study were to determine the inheritance of resistance for FAW, identity hybrids which in addition to FAW resistance, also show resistance to TLB and GLS, and investigate the usefulness of models based on general combining ability (GCA) and SNP markers in predicting the performance of new untested hybrids. Half-diallel mating scheme was used to generate 105 F hybrids from 15 parents and another 55 F hybrids from 11 parents. These were evaluated in two experiments, each with commercial checks in multiple locations under FAW artificial infestation and optimum management in Kenya. Under artificial FAW infestation, significant mean squares among hybrids and hybrids x environment were observed for most traits in both experiments, including at least one of the three assessments carried out for foliar damage caused by FAW. Interaction of GCA x environment and specific combining ability (SCA) x environment interactions were significant for all traits under FAW infestation and optimal conditions. Moderate to high heritability estimates were observed for GY under both management conditions. Correlation between GY and two of the three scorings (one and three weeks after infestation) for foliar damage caused by FAW were negative (-0.27 and -0.38) and significant. Positive and significant correlation (0.84) was observed between FAW-inflicted ear damage and the percentage of rotten ears. We identified many superior-performing hybrids compared to the best commercial checks for both GY and FAW resistance associated traits. Inbred lines CML312, CML567, CML488, DTPYC9-F46-1-2-1-2, CKDHL164288, CKDHL166062, and CLRCY039 had significant and positive GCA for GY (positive) and FAW resistance-associated traits (negative). CML567 was a parent in four of the top ten hybrids under optimum and FAW conditions. Both additive and non-additive gene action were important in the inheritance of FAW resistance. Both GCA and marker-based models showed high correlation with field performance, but marker-based models exhibited considerably higher correlation. The best performing hybrids identified in this study could be used as potential single cross testers in the development of three-way FAW resistance hybrids. Overall, our results provide insights that help breeders to design effective breeding strategies to develop FAW resistant hybrids that are high yielding under FAW and optimum conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896009PMC
http://dx.doi.org/10.3389/fpls.2023.1086757DOI Listing

Publication Analysis

Top Keywords

faw resistance
16
faw
15
hybrids
11
artificial infestation
8
fall armyworm
8
optimum conditions
8
combining ability
8
hybrids parents
8
commercial checks
8
faw infestation
8

Similar Publications

The fall armyworm (Spodoptera frugiperda, FAW) has developed varying degrees of resistance to chlorantraniliprole (CAP). Apoptosis serves as a critical defense mechanism against pesticide stress in insects. Here, we identified a juvenile hormone (JH)-mediated apoptotic pathway through RNA-seq, revealing nine JH-induced apoptosis-related genes (four positively correlated and five negatively correlated).

View Article and Find Full Text PDF

Molecular characterization of Spodoptera frugiperda nose resistant to fluoxetine protein 6 and its putative involvement in tolerance to cyantraniliprole.

Pestic Biochem Physiol

November 2025

College of Plant Protection, Yangzhou University, Yangzhou 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:

Spodoptera frugiperda (FAW) is a notorious polyphagous pest that has developed resistance to various insecticides including diamide insecticides. Our previous study established a FAW cyantraniliprole-resistant (SfCYAN-R) strain by laboratory resistance selection of susceptible strain (SfCYAN-S), however, the potential resistance mechanisms of FAW to cyantraniliprole remain unclear. In this study, SfNrf6 encoding nose resistant to fluoxetine (Nrf) protein 6 was identified to be upregulated in SfCYAN-R strain compared with SfCYAN-S strain based on RNA-Seq data and RT-qPCR.

View Article and Find Full Text PDF

Unlabelled: Cysteine proteases (CPs), a pivotal class of proteolytic enzymes ubiquitously distributed across plant genomes, play critical roles in plant development, senescence, and immune responses. However, systematic investigations of CPs in maize ( L.) remain limited.

View Article and Find Full Text PDF

Bone cancer remains a life-threatening malignancy predominantly affecting pediatric and adolescent populations, with tyrosine kinase inhibitors (TKIs) emerging as promising therapeutic agents; however, their clinical utility is limited by poor bioavailability, systemic toxicity, and inadequate tumor targeting. Recent advancements in nanocarrier-based delivery systems have significantly mitigated these limitations by enhancing targeted accumulation of TKIs at tumor sites, reducing off-target effects, and enabling controlled drug release. Various nanocarrier platforms, including liposomes, polymeric nanoparticles, micelles, dendrimers, metal- and metal oxide-based nanoparticles, carbon-based carriers, polymeric implants, and hydroxyapatite-based systems, have been systematically evaluated for their efficacy in delivering TKIs for bone cancer therapy.

View Article and Find Full Text PDF

Hofmeister "Salting-In" Assisted Slurry Homogenization for Ultra-Thin Sulfide Solid-State Electrolytes.

Angew Chem Int Ed Engl

August 2025

Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

Sulfide-based all-solid-state batteries (ASSBs) demand ultra-thin electrolytes to achieve low impedance and high energy density, yet scalable fabrication remains bottlenecked by the incompatibility between binder/ solvent and sulfide solid-state electrolytes (SSEs). Here, we introduce a pioneering slurry-based strategy leveraging Hofmeister "salting-in" effect to disperse binders in a poor-solvent environment, dramatically expanding the applicable binder spectrum. The copolymer poly(vinylidenefluoride-trifluoroethylene-chlorotrifluoroethylene) (PVTC) was uniformly dispersed in tetrahydrofuran via Li-salts mediation, reducing chain aggregate to hundreds of nanometers.

View Article and Find Full Text PDF