Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) can visualize the spatial distribution characteristics of molecules in tissues in situ, in which the matrix plays a key role. In this paper, we propose a platinum nanomaterial pre-coated matrix, which can be prepared in bulk by sputtering platinum nanoparticles onto slides using an ion sputterer and then used for MALDI-MS analysis by placing tissue sections on the matrix. We used this matrix for MALDI-MS imaging analysis of corn kernels and germinated wheat sections, and the results show that triacylglycerides were mainly distributed in the embryo of corn kernels and germinated wheat, and sugars were mainly distributed in the endosperm, with the highest content of disaccharides.It provides a simple and reliable experimental condition for analyzing the distribution of oligosaccharide and lipid components in plant tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889645PMC
http://dx.doi.org/10.3389/fpls.2023.1105374DOI Listing

Publication Analysis

Top Keywords

platinum nanomaterial
8
matrix maldi-ms
8
maldi-ms imaging
8
plant tissues
8
corn kernels
8
kernels germinated
8
germinated wheat
8
matrix
5
prefabricated platinum
4
nanomaterial matrix
4

Similar Publications

Inorganic nanomaterial-based peroxidase mimics have recently emerged as promising alternatives to natural peroxidases for enhancing the detection sensitivity of bioassays, such as enzyme-linked immunosorbent assay (ELISA). Among them, magnetically active peroxidase mimics are particularly advantageous due to their ability to facilitate efficient separation and enrichment of target analytes. However, most reported magnetic peroxidase mimics suffer from limited catalytic efficiency and stability.

View Article and Find Full Text PDF

Mesoporous metal nanomaterials (MMNs) have gained interest in biomedicine for their unique properties, but their potential is limited by the predominance of spherical shapes and the neglect of morphological effects on biological activity, which hinders the reasonable evaluation of morphology-dependent enzyme-like activities and biological behaviors and its further biomedical applications. It is therefore imperative to find an effective and facile method to design and prepare MMNs with novel, well-defined morphologies. Herein, we fabricated 3 mesoporous platinum nanoenzymes including sphere, rod, and bipyramid topologies [Au@mesoPt sphere, Au@mesoPt rod, and Au@mesoPt bipyramid nanoparticles (NPs), respectively] via a facile atomic layer deposition method using gold NPs (Au NPs) as the templated cores and Pluronic F127 as a structure-directing agent.

View Article and Find Full Text PDF

Novel ultrafine Pt@Fe-MIL-101 nanozyme enables robust aflatoxin B1 immunoassay in diverse marine and agricultural systems.

Anal Chim Acta

November 2025

State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Detection of Veterinary Drug Residues and Illegal Additives of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. Electronic address: haiyang

Background: Aflatoxin B1 (AFB1) stands among the most toxic naturally occurring substances, with its acute toxicity characterized by the induction of acute hepatic necrosis, hemorrhage, and even fatal outcomes, thereby posing a profound threat to human health. Contamination of AFB1 in food commodities can arise at multiple stages throughout the production cycle, including cultivation, storage, and processing. This contamination cascade permeates the entire food supply chain, encompassing primary agricultural products as well as a diverse range of processed food items.

View Article and Find Full Text PDF

Spinal cord injury presents a significant clinical challenge. There are limited treatment options, and the results of regeneration are often disappointing. Secondary injury processes, including oxidative stress and chronic inflammation, worsen nerve damage and slow recovery.

View Article and Find Full Text PDF

Synthesis control of rhombic dodecahedral PtNiFe nanostructures for enhanced oxygen reduction reaction.

Nanoscale

September 2025

Department of Electrical Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju, 61452, South Korea.

Platinum and platinum-based alloys have been reported to exhibit enhanced electrochemical properties in proton exchange membrane fuel cells and electrolyzers. The development of platinum alloy-based catalysts has focused on designing structures with highly active surfaces and optimizing the utilization of the noble metal Pt. In this study, we demonstrate the synthesis of novel nanostructures with a rhombic dodecahedral morphology through precursor syntheses of Pt, Ni, and Fe.

View Article and Find Full Text PDF