Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Novel biomarkers are needed to differentiate outcomes in intermediate-risk rhabdomyosarcoma (IR RMS). We sought to evaluate strategies for identifying circulating tumor DNA (ctDNA) in IR RMS and to determine whether ctDNA detection before therapy is associated with outcome.

Patients And Methods: Pretreatment serum and tumor samples were available from 124 patients with newly diagnosed IR RMS from the Children's Oncology Group biorepository, including 75 patients with fusion-negative rhabdomyosarcoma (FN-RMS) and 49 with fusion-positive rhabdomyosarcoma (FP-RMS) disease. We used ultralow passage whole-genome sequencing to detect copy number alterations and a new custom sequencing assay, Rhabdo-Seq, to detect rearrangements and single-nucleotide variants.

Results: We found that ultralow passage whole-genome sequencing was a method applicable to ctDNA detection in all patients with FN-RMS and that ctDNA was detectable in 13 of 75 serum samples (17%). However, the use of Rhabdo-Seq in FN-RMS samples also identified single-nucleotide variants, such as , previously associated with prognosis. Identification of pathognomonic translocations between or and by Rhabdo-Seq was the best method for measuring ctDNA in FP-RMS and detected ctDNA in 27 of 49 cases (55%). Patients with FN-RMS with detectable ctDNA at diagnosis had significantly worse outcomes than patients without detectable ctDNA (event-free survival, 33.3% 68.9%; = .0028; overall survival, 33.3% 83.2%; < .0001) as did patients with FP-RMS (event-free survival, 37% 70%; = .045; overall survival, 39.2% 75%; = .023). In multivariable analysis, ctDNA was independently associated with worse prognosis in FN-RMS but not in the smaller FP-RMS cohort.

Conclusion: Our study demonstrates that baseline ctDNA detection is feasible and is prognostic in IR RMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150913PMC
http://dx.doi.org/10.1200/JCO.22.00409DOI Listing

Publication Analysis

Top Keywords

ctdna detection
12
ctdna
10
circulating tumor
8
tumor dna
8
intermediate-risk rhabdomyosarcoma
8
children's oncology
8
oncology group
8
ultralow passage
8
passage whole-genome
8
whole-genome sequencing
8

Similar Publications

Background: Current aftercare in breast cancer survivors aims to detect local recurrences or contralateral disease, while the detection of distant metastases has not been a central focus due to a lack of evidence supporting an effect on overall survival. However, the data underpinning these guidelines are mainly from trials of the 1980s/1990s and have not been updated to reflect the significant advancements in diagnostic and therapeutic options that have emerged over the past 40 years. In this trial, the aim is to test whether a liquid biopsy-based detection of (oligo-) metastatic disease at an early pre-symptomatic stage followed by timely treatment can impact overall survival compared to current standard aftercare.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) is standard of care in advanced diffuse pleural mesothelioma (DPM), but its role in the perioperative management of DPM is unclear. In tandem, circulating tumor DNA (ctDNA) ultra-sensitive residual disease detection has shown promise in providing a molecular readout of ICB efficacy across resectable cancers. This phase 2 trial investigated neoadjuvant nivolumab and nivolumab/ipilimumab in resectable DPM along with tumor-informed liquid biopsy residual disease assessments.

View Article and Find Full Text PDF

Liquid biopsy, specifically circulating tumor DNA (ctDNA) analysis, has emerged as a transformative tool in precision oncology, providing real-time, minimally invasive characterizations of the tumor and tumor dynamics. While tissue biopsy is a critical tool for baseline diagnosis of malignancy, it is often limited by sampling constraints and an inability to capture tumor heterogeneity. In this study, we explored the clinical utility of serial ctDNA testing in guiding therapeutic decisions across a cohort of 30 patients with diverse solid tumors.

View Article and Find Full Text PDF

The diagnostic accuracy of next-generation sequencing in advanced NSCLC.

J Liq Biopsy

September 2025

Department of Clinical Oncology, Centre of Cancer Medicine, Li Ka Shing Faculty of Medicine, Hong Kong Special Administrative Region of China.

Background: Comprehensive genomic profiling is crucial for guiding treatment in advanced non-small cell lung cancer (NSCLC). However, tumor tissue-based targeted panel next-generation sequencing (TP-NGS) faces challenges, such as inadequate tissue sampling. Circulating tumor DNA (ctDNA) from peripheral blood has emerged as an alternative.

View Article and Find Full Text PDF

Liquid biopsies, particularly those involving circulating tumor DNA (ctDNA) from patient blood, have emerged as crucial and minimally invasive adjuncts to standard tissue-based testing. ctDNA testing enables the identification of actionable mutations for targeted therapy and can be routinely used when tissue samples are unavailable for genotyping. Compared to tissue-based testing, ctDNA testing has the advantages of capturing spatial or temporal genomic heterogeneity and facilitating repeated assessments.

View Article and Find Full Text PDF