Evaluation of the oxidative toxicity induced by lead, manganese, and cadmium using genetically modified nrf2a-mutant zebrafish.

Comp Biochem Physiol C Toxicol Pharmacol

Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heavy metal pollution has become a serious environmental concern and a threat to public health. Three of the most common heavy metals are cadmium (Cd), lead (Pb), and manganese (Mn). Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor activated in the response to oxidative stress. In this study, mutant zebrafish with an nrf2a deletion of 7 bp were constructed by the CRISPR/Cas9 system to investigate the oxidative toxicity of these three heavy metals. The results of general toxicity tests showed that Pb exposure did not cause significant damage to mutant zebrafish compared with wild-type (WT) zebrafish. However, high Mn exposure increased mortality and malformation rates in mutant zebrafish. Of concern, Cd exposure caused significant toxic damage, including increased mortality and malformation rates, apoptosis of brain neurons, and severe locomotor behavior aberration in mutant zebrafish. The results of qRT-PCR indicated that Cd exposure could induce the activation of genes related to oxidative stress resistance in WT zebrafish, while the expression of these genes was inhibited in mutant zebrafish. This study showed that of the three heavy metals, Cd had the strongest oxidative toxicity, Mn had medium toxicity, and Pb had the weakest toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2023.109550DOI Listing

Publication Analysis

Top Keywords

mutant zebrafish
20
oxidative toxicity
12
heavy metals
12
lead manganese
8
zebrafish
8
oxidative stress
8
three heavy
8
increased mortality
8
mortality malformation
8
malformation rates
8

Similar Publications

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease. There are currently few effective therapies to treat the disease, although many approaches are being pursued. Certain histone deacetylase inhibitors (HDACi) have been shown to ameliorate DMD phenotypes in mouse and zebrafish models, and the HDACi givinostat has recently gained FDA approval for DMD.

View Article and Find Full Text PDF

Redundant and novel functions of scube genes during zebrafish development.

Dev Biol

September 2025

Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia. Electronic address:

The N-glycoprotein SCUBE family (Scube1, Scube2, and Scube3) plays diverse roles in vertebrate development and disease, yet many specific functions of the three family members remain unclear. These proteins exhibit broad tissue expression patterns, exist as soluble or membrane-tethered forms, and can form homo- or heteromeric complexes with each other, exerting both short- and long-range effects. Individual functional characterisation proves challenging because overlapping expression patterns and compensatory mechanisms likely obscure specific roles.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a meiosis-specific structure that aligns homologous chromosomes and promotes the repair of meiotic DNA double-strand breaks (DSBs). To investigate how defects in SC formation affect gametogenesis in zebrafish, we analyzed mutations in two genes encoding core SC components: syce2 and sycp1. In syce2 mutants, chromosomes exhibit partial synapsis, primarily at sub-telomeric regions, whereas sycp1 mutant chromosomes display early prophase co-alignment but fail to synapse.

View Article and Find Full Text PDF

β-Asaronol, the Neuroactive Component of : Mitigating Seizures with Minimal Developmental Risk in Dravet Syndrome.

ACS Chem Neurosci

September 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, P.R. China.

Developmental epileptic encephalopathies (DEEs), including Dravet syndrome (DS), require antiseizure medications (ASMs) that balance efficacy with developmental safety. There is an urgent clinical need for novel therapeutic agents that combine potent anticonvulsant activity with developmental safety. β-Asarone, an active constituent of plants, has demonstrated antiepileptic potential, but its toxicities severely limit clinical application.

View Article and Find Full Text PDF

In most animals, oocyte polarity establishes the embryonic body plan by asymmetrically localizing axis-determining transcripts. These transcripts first localize in and zebrafish oocytes to the Balbiani body (Bb), a large membrane-less organelle conserved from insects to humans. The Bb is transient, disassembling and anchoring at one pole the axis-determining transcripts that establish the vegetal pole of the oocyte.

View Article and Find Full Text PDF