98%
921
2 minutes
20
The algebraic properties of flattenings and subflattenings provide direct methods for identifying edges in the true phylogeny-and by extension the complete tree-using pattern counts from a sequence alignment. The relatively small number of possible internal edges among a set of taxa (compared to the number of binary trees) makes these methods attractive; however, more could be done to evaluate their effectiveness for inferring phylogenetic trees. This is the case particularly for subflattenings, and the work we present here makes progress in this area. We introduce software for constructing and evaluating subflattenings for splits, utilising a number of methods to make computing subflattenings more tractable. We then present the results of simulations we have performed in order to compare the effectiveness of subflattenings to that of flattenings in terms of split score distributions, and susceptibility to possible biases. We find that subflattenings perform similarly to flattenings in terms of the distribution of split scores on the trees we examined, but may be less affected by bias arising from both split size/balance and long branch attraction. These insights are useful for developing effective algorithms to utilise these tools for the purpose of inferring phylogenetic trees.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886601 | PMC |
http://dx.doi.org/10.1007/s11538-023-01120-z | DOI Listing |
Eur J Clin Microbiol Infect Dis
September 2025
School of Bioengineering and Biosciences, Department of Biochemistry, Lovely Professional University, Punjab, 144411, India.
Purpose: This study investigates codon usage and amino acid usage bias in the genus Acinetobacter to uncover the evolutionary forces shaping these patterns and their implications for pathogenicity and biotechnology.
Methods: Codon usage patterns were examined in representative genomes of the genus Acinetobacter using standard codon bias indices, including GC content, relative synonymous codon usage (RSCU), effective number of codons (ENC), and codon adaptation index (CAI). Neutrality and parity plots were employed to evaluate the relative influence of mutational pressure and natural selection on codon preferences.
Genetica
September 2025
Faculty of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
Population genetics plays a critical role in creating policies for managing fisheries, conservation, and development of aquaculture. The golden snapper, Lutjanus johnii (Bloch, 1792), is a highly commercial and aquaculture important snapper species. This study used mitochondrial markers D-loop (151 specimens) and Cytochrome b (Cyt-b, 120 specimens) from 10 populations, including populations from the east South China Sea, the west South China Sea and the Strait of Malacca to investigate the genetic diversity, population connectivity, and historical demography of L.
View Article and Find Full Text PDFPlanta
September 2025
Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
The first complete plastid genome of the critically endangered species Valeriana trinervis was sequenced, assembled and compared with other published Valeriana plastomes. In this study, we assembled the plastid genome of the critically endangered, endemic species Valeriana trinervis (= Centranthus trinervis) and compare it with all published plastomes of Valeriana. We found not only differences in the inverted repeats boundaries, in the type and abundance of repeats, but also similarities in codon usage and microsatellite numbers.
View Article and Find Full Text PDFmBio
September 2025
School of Biological Sciences, University of Auckland, Auckland, New Zealand.
The rotation of the bacterial flagellum is powered by the MotAB stator complex, which converts ion flux into torque. Despite its central role in flagellar function, the evolutionary origin and structural diversity of this system remain poorly understood. Here, we present the first comprehensive phylogenetic and structural characterization of MotAB and its closest non-flagellar homologs.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
Pufferfish exhibit the smallest vertebrate genomes, making them ideal models for investigating evolutionary patterns and processes that affect genome size. While the Takifugu rubripes genome was fully sequenced two decades ago, key evolutionary drivers remain elusive. We sequenced 10 pufferfish genomes and generated 35 transcriptomes and 13 methylomes to understand genomic evolutionary mechanisms.
View Article and Find Full Text PDF