Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (, , and ) featuring majority zigzag peripheries. Through many-body calculations, we identify a transition from a closed-shell ground state to an open-shell ground state upon an increase of the molecular size. Our predictions indicate that the largest MEC for open-shell NGs occurs in proximity to the transition between closed-shell and open-shell states. Such predictions are corroborated by the on-surface syntheses and structural, electronic, and magnetic characterizations of three NGs (, , and ), which are the smallest open-shell systems in their respective chemical families and are thus located the closest to the transition boundary. Notably, two of the NGs ( and ) feature record values of MEC (close to 200 meV) measured on the Au(111) surface. Our strategy for maximizing the MEC provides perspectives for designing carbon nanomaterials with robust magnetic ground states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c11431DOI Listing

Publication Analysis

Top Keywords

magnetic exchange
8
exchange coupling
8
closed-shell open-shell
8
transition closed-shell
8
ground state
8
magnetic
6
open-shell
6
transition
5
steering large
4
large magnetic
4

Similar Publications

Background: Thrombotic thrombocytopenic purpura (TTP) is a life-threatening hematologic emergency caused by ADAMTS13 deficiency, leading to microvascular thrombosis, haemolytic anaemia, thrombocytopenia, and end-organ damage. Neurological symptoms occur in up to 90% of cases and are frequently misdiagnosed as stroke. Prompt recognition and treatment reduce the mortality rate from over 90% to 10-20%.

View Article and Find Full Text PDF

Neutral iron(III) and iron(II) complexes based on the pyruvic acid thiosemicarbazone (Hthpy) ligand [Fe(Hthpy)(thpy)] (1) and [Fe(Hthpy)] (2) were synthesized, and deeper insights into magneto-structural correlation were gained by FT-IR spectroscopy, single crystal X-ray crystallography, dc magnetic characterization, Fe Mössbauer spectroscopy, and DFT calculations. The X-ray structures of complex 1 were established for the HS ( = 5/2) state at 295 K and the LS ( = 1/2) state at 150 K. The crystal packing of 1 at these temperatures corresponds to the triclinic 1̄ symmetry and contains pairs of [Fe(Hthpy)(thpy)] complexes interconnected by a shortened S⋯S contact.

View Article and Find Full Text PDF

Nucleic acid-based therapeutics, such as oncolytic virotherapy or gene therapy, would benefit greatly from a reporter gene that induces endogenous production of a protein biomarker to noninvasively track the delivery, persistence, and spread with imaging. Several chemical exchange saturation transfer (CEST) reporter proteins detectable by magnetic resonance imaging (MRI) have been demonstrated to have high sensitivity. However, to date none can provide strong CEST contrast at a distinct resonance from that of endogenous proteins, limiting their specificity.

View Article and Find Full Text PDF

In this work, we report a facile strategy for synthesizing hydrophilic Gd(OH) sheets via a Gd-based interfacial precipitation reaction at the interface of organosilane-modified GdO nanoparticles and a cation exchange resin. This strategy, independent of the specific organosilane used, produces two-dimensional sheets with a distinct lamellar structure and excellent aqueous dispersibility. Characterization confirms the formation of Gd(OH) sheets with promising fluorescent and magnetic properties.

View Article and Find Full Text PDF

Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.

View Article and Find Full Text PDF