98%
921
2 minutes
20
High-latitude fish are subjected to sustained and diel-cycling hypoxia. Oxygen deficiency could pose a serious threat to fish, but little information is available regarding the response mechanisms employed by high-latitude fish to sustained and diel-cycling hypoxia. In this study, a combination of transcriptomics and metabolomics were used to examine the molecular response mechanisms actioned by sustained and diel-cycling hypoxia in the high-latitude fish, Phoxinus lagowskii. P. lagowskii was divided into normoxic control (6.0-7.0 mg/L dissolved oxygen), sustained (1.5 mg/L dissolved oxygen), and diel-cycling hypoxic treatment (6.0-7.0 mg/L between 07:00-21:00, and 3.0-4.0 mg/L between 21:00-07:00) tanks for 28 days. Differentially expressed genes (DEGs) and significantly different metabolites (DMs) related to digestive proteases, lipid metabolism, estrogen signaling pathway, steroid hormone biosynthesis, glutathione metabolism, and tryptophan metabolism were identified from comparative metabolomic and transcriptomic data expression profiles within the liver. The current study found that P. lagowskii had significantly different responses between sustained and diel-cycling hypoxia. P. lagowskii faced with sustained hypoxia may enhance their tolerance capacity through phospholipid and glutathione metabolism. Our data provide new insights into the high latitude fish coping with changes in hypoxia and warrants further investigation into these potentially important genes and metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2023.101059 | DOI Listing |
Environ Microbiol Rep
June 2025
Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden.
In the Boreal region, extreme seasonal variations in day-night length expose communities to dynamic light and temperature fluctuations. Freshwater bacterioplankton, representing key ecosystem components, faces climate-driven shifts; yet the fixed day-length patterns determined by latitude underscore the importance of studying light's role in predicting ecosystem responses. We investigated bacterial community composition in a brown peat bog and a clear oligotrophic lake across seasons with contrasting light regimes: the summer solstice (> 20 h of daylight) and the autumn equinox (equal day-night length).
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
March 2023
Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China. Electronic address:
High-latitude fish are subjected to sustained and diel-cycling hypoxia. Oxygen deficiency could pose a serious threat to fish, but little information is available regarding the response mechanisms employed by high-latitude fish to sustained and diel-cycling hypoxia. In this study, a combination of transcriptomics and metabolomics were used to examine the molecular response mechanisms actioned by sustained and diel-cycling hypoxia in the high-latitude fish, Phoxinus lagowskii.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
October 2021
Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China. Electronic address:
Phoxinus lagowskii is a popular fish in Chinese cuisine. Though it is found mainly in China's high-latitude regions, where diel-cycling hypoxia (DCH) is known to have unique impacts on aquatic organisms, there is little known about its response to hypoxia. Currently, nothing is known about the changes in blood parameters, gill and liver morphology, glucose and lipid metabolism, or expression of genes involved in clock and glucose metabolism in response to sustained hypoxia (SH) and diel-cycling hypoxia (DCH).
View Article and Find Full Text PDFNat Microbiol
April 2021
Department of Earth Science and Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA, USA.
Environ Microbiol
June 2020
Department of Microbiology, University of Tennessee, Knoxville, TN, USA.
The over-enrichment of nitrogen (N) in the environment has contributed to severe and recurring harmful cyanobacterial blooms, especially by the non-N -fixing Microcystis spp. N chemical speciation influences cyanobacterial growth, persistence and the production of the hepatotoxin microcystin, but the physiological mechanisms to explain these observations remain unresolved. Stable-labelled isotopes and metabolomics were employed to address the influence of nitrate, ammonium, and urea on cellular physiology and production of microcystins in Microcystis aeruginosa NIES-843.
View Article and Find Full Text PDF