98%
921
2 minutes
20
Target of rapamycin complex 1 (TORC1) is a protein kinase controlling cell homeostasis and growth in response to nutrients and stresses. In Saccharomyces cerevisiae, glucose depletion triggers a redistribution of TORC1 from a dispersed localization over the vacuole surface into a large, inactive condensate called TOROID (TORC1 organized in inhibited domains). However, the mechanisms governing this transition have been unclear. Here, we show that acute depletion and repletion of EGO complex (EGOC) activity is sufficient to control TOROID distribution, independently of other nutrient-signaling pathways. The 3.9-Å-resolution structure of TORC1 from TOROID cryo-EM data together with interrogation of key interactions in vivo provide structural insights into TORC1-TORC1' and TORC1-EGOC interaction interfaces. These data support a model in which glucose-dependent activation of EGOC triggers binding to TORC1 at an interface required for TOROID assembly, preventing TORC1 polymerization and promoting release of active TORC1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023571 | PMC |
http://dx.doi.org/10.1038/s41594-022-00912-6 | DOI Listing |
J Clin Invest
September 2025
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, United States of America.
B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.
View Article and Find Full Text PDFCurr Opin Rheumatol
September 2025
University Medical Centre Ljubljana, Department of Rheumatology, Ljubljana.
Purpose Of Review: This review examines how metabolic reprogramming drives fibrosis and immune dysregulation in systemic sclerosis (SSc), emphasizing the role of nutrient-sensing and energy pathways in disease progression.
Recent Findings: SSc is characterized by a shift from catabolic to anabolic metabolism, defined by reduced AMP-activated protein kinase (AMPK) and enhanced mechanistic target of rapamycin complex 1 (mTORC1) signaling. This promotes biosynthetic activity, with upregulated glycolysis supplying substrates for collagen production and supporting pro-inflammatory immune cell polarization.
Nat Commun
September 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Parkinson's disease (PD) is characterized by the selective degeneration of midbrain dopaminergic neurons and aggregation of α-synuclein. Emerging evidence implicates the gut microbiome in PD, with microbial metabolites proposed as potential pathological mediators. However, the specific microbes and metabolites involved, and whether gut-derived metabolites can reach the brain to directly induce neurodegeneration, remain unclear.
View Article and Find Full Text PDFLife Sci Alliance
November 2025
Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
Amino acid (AA) detection is fundamental for cellular function, balancing translation demands, biochemical pathways, and signaling networks. Although the GCN2 and mTORC1 pathways are known to regulate AA sensing, the global cellular response to AA deprivation remains poorly understood, particularly in non-transformed cells, which may exhibit distinct adaptive strategies compared with cancer cells. Here, we employed murine pluripotent embryonic stem (ES) cells as a model system to dissect responses to AA stress.
View Article and Find Full Text PDF