Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The pinnacle of all the efforts of nutrient removal is practically put-down the moment biological cells are lysed, hydrolyzed or digested causing subsequent reappearance of assimilated nitrogen and phosphorus in any biological process. While sludge reduction requires high SRT, the enhanced phosphorus assimilative uptake demands low SRT. A novel reactor configuration for enhanced sludge and phosphorus removal was put to test by incorporating a side stream anaerobic reactor to an Anaerobic-Anoxic-Aerobic (AO) SBR with a pre-anoxic chamber and an influent receiving inlet anaerobic reactor. The reactor was operated at the average and lowest range of prevailing carbon/phosphorus (C/P) ratio of 50 and 15 in the sewage. The phosphorus enrichment was 0.0469-0.135 mgTP/mgVSS resulting in 1.76-5.05-fold increase from cellular content by virtue of maintaining sludge recycle from SBR aeration tank to side stream anaerobic reactor from 3.78 to 9.78 (average 4.4-8.2) gVSS/gVSS present in the reactor. However, the sludge was also reduced from 3% to 51% on an average basis during the same recirculation regime. This novel configuration consists of an inlet anaerobic reactor, one pre-anoxic chamber and one intermittent oxic anoxic reaction SBR and a side stream anaerobic reactor. The first anaerobic reactor at inlet followed by pre-anoxic chamber was provided for increased ortho-p released and nitrification respectively and a side stream anaerobic reactor for sludge reduction through sludge fasting mechanism. The EBPR and lesser sludge growth were two conflicting parameters reconciled to the extent that if sludge recycled up to 6.41 gVSS/gVSS the sludge growth would be reduced by 25% and phosphorus enrichment could be attained up to 3.46 times the stoichiometric value. Any further recirculation would reduce the sludge further but at the expense of enhanced phosphorus uptake as released phosphorus from side stream anaerobic reactor also recycled back to main SBR causing looping and at more than 6.41gVSSrecycled/gVSS it nullified the enhanced effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.137945DOI Listing

Publication Analysis

Top Keywords

anaerobic reactor
32
side stream
20
stream anaerobic
20
pre-anoxic chamber
12
sludge
11
reactor
11
sludge reduction
8
enhanced phosphorus
8
anaerobic
8
inlet anaerobic
8

Similar Publications

Long-term effects and mechanisms of sulfur-modified nanoscale zero-valent iron in enhancing anaerobic treatment of highly toxic wastewater containing 2,4-dichlorophenol.

Bioresour Technol

September 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Sulfur-modified nanoscale zero-valent iron (S-nZVI) has emerged as a promising additive for enhancing anaerobic treatment of refractory wastewater. However,its long-term effectiveness and role in toxic shock resistance remain unclear. Herein, S-nZVI was first applied to continuous-flow anaerobic reactors treating wastewater containing 2,4-dichlorophenol (2,4-DCP).

View Article and Find Full Text PDF

Optimal low-frequency mechanical vibration enhances extracellular polymeric substances-mediated phosphorus removal in biological systems.

Water Res

August 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.

The biological phosphorus removal (BPR) process relies on frequent phosphorus exchange between functional microorganisms and their surrounding environment. However, limited mass transfer restricts the overall phosphorus removal efficiency. In this study, low-frequency mechanical vibration (LFMV) was introduced into the anaerobic/oxic reactors.

View Article and Find Full Text PDF

Short-chain fatty acids production from hydrothermal conversion wastewater (HTCWW): focusing on microbial community analysis.

Bioresour Technol

September 2025

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, Chi

Hydrothermal conversion (HTC) is a widely recognized method to produce biofuel and hydro-char from biomass. This study investigated the production of short-chain fatty acids (SCFAs) from HTC wastewater (HTCWW) through anaerobic fermentation (AF) and optimized the process conditions in both continuous stirred tank reactors (CSTR) and anaerobic sequencing batch reactors (ASBR). The highest SCFAs yield 0.

View Article and Find Full Text PDF

The manual manometric (MM) method is widely used in batch anaerobic digestion tests, such as the biochemical methane potential (BMP) and the specific methanogenic activity (SMA), but it can cause inaccuracies due to biogas loss during measurements. This study presents an IoT-based biogas pressure measurement device developed with an Arduino microcontroller to improve accuracy and reliability in batch tests. The device supports four reactors and was tested in 250 mL glass vessels with varying headspace (20 and 50%) and substrate/inoculum ratios (0.

View Article and Find Full Text PDF

This study evaluates biogas production from co-digested organic waste in a bench-scale semi-continuous Continuous Stirred Tank Reactor (CSTR). The use of organic waste in anaerobic digestion (AD) enables sustainable practices that help diversify the energy portfolio and reach decarbonization goals. However, the challenges associated with the operation of anaerobic reactor require studies and guidelines aimed at strategies for establishing biogas plants.

View Article and Find Full Text PDF