Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The production and release of nanoparticles and their impacts on living organisms are among the most important concerns in the world. Spirulina platensis was chosen because of its ability to absorb more elements than other algae. Therefore, an experiment was conducted to improve the product quality of spirulina exposed to new type of nanoparticles. In this experiment, vanadium oxide nanoparticles (VNPs) and tungsten oxide nanoparticles (WNPs) were used at concentrations of 0, 0.001, 0.017, and 0.05 g/l. The measured indices such as protein percentage and concentrations of phycobiliproteins and carbohydrates were the most important parameters of spirulina. Results showed that the concentration of 0.001 g/l of VNPs significantly affected the amounts of protein and phycocyanin. It has also been observed that 0.001 g/l of WNPs significantly influenced the amounts of protein (5.3%) and phycocyanin (90%); however, WNPs at all concentrations increased the concentrations of protein and phycocyanin. A concentration of 0.05 g/l of WNPs increased phycocyanin content by 83% over the control. The examination of nanoparticles by spirulina showed that VNPs were more adsorbed by spirulina than WNPs. In general, VNPs were toxic to algae at concentrations of 0.017 and 0.05 g/l, but WNPs did not show any fatal toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25461-3DOI Listing

Publication Analysis

Top Keywords

oxide nanoparticles
12
vanadium oxide
8
nanoparticles spirulina
8
spirulina platensis
8
wnps concentrations
8
0017 005 g/l
8
amounts protein
8
protein phycocyanin
8
005 g/l wnps
8
nanoparticles
6

Similar Publications

Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.

Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.

View Article and Find Full Text PDF

Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.

View Article and Find Full Text PDF

Aluminum (Al) is a cost-effective alternative to noble metals for plasmonics, particularly in the ultraviolet (UV) and visible regions. However, in the near-infrared (NIR) region, its performance is hindered by interband transitions (IBTs) at around 825 nm, leading to increased optical losses and broad resonances. Surface lattice resonances (SLRs) offer a promising solution by enhancing the plasmonic quality factor (-factor) through coherent coupling of localized surface plasmon (LSP) modes with Rayleigh anomalies.

View Article and Find Full Text PDF

Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.

View Article and Find Full Text PDF

Introduction: Leukemia and radiation-induced liver toxicity are significant health challenges requiring effective therapeutic strategies. This study aimed to evaluate the therapeutic efficacy and radiosensitizing effects of Diosgenin-loaded silver nanoparticles (Dio-AgNPs) in ENU-induced leukemic mice, with a focus on their dual role in mitigating leukemia progression and γ-irradiation-induced hepatotoxicity.

Methods: Dio-AgNPs were synthesized and characterized using TEM, UV-Vis spectroscopy, FT-IR spectroscopy, and encapsulation efficiency analysis.

View Article and Find Full Text PDF