Chemical communication in plant-microbe beneficial interactions: a toolbox for precise management of beneficial microbes.

Curr Opin Microbiol

Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Harnessing the power of beneficial microbes in the rhizosphere to improve crop performance is a key goal of sustainable agriculture. However, the precise management of rhizosphere microbes for crop growth and health remains challenging because we lack a comprehensive understanding of the plant-rhizomicrobiome relationship. In this review, we discuss the latest research progress on root colonisation by representative beneficial microbes (e.g. Bacillus spp. and Pseudomonas spp.). We also highlight the bidirectional chemical communication between microbes and plant roots for precise functional control of beneficial microbes in the rhizosphere, as well as advances in understanding how beneficial microbes overcome the immune system of plants. Finally, we propose future research objectives that will help us better understand the complex network of plant-microbe interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mib.2023.102269DOI Listing

Publication Analysis

Top Keywords

beneficial microbes
20
chemical communication
8
precise management
8
microbes rhizosphere
8
microbes
7
beneficial
6
communication plant-microbe
4
plant-microbe beneficial
4
beneficial interactions
4
interactions toolbox
4

Similar Publications

Beneficial soil microbes as drivers of plant-insect interactions: A Perspective.

Curr Opin Insect Sci

September 2025

Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA. Electronic address:

The association of plants with beneficial soil microbes, including arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR), can enhance plant growth and nutrient uptake while modifying plant traits including growth rate, architecture, nutritional quality, secondary metabolites, phytohormones and volatile organic compounds (VOCs), necessary for interactions with insect pests and their natural enemies. Microbe-induced effects on insect herbivores and their natural enemies can be positive, neutral, or negative and are context dependent, creating the need for continued synthesis of published research to identify emerging patterns, recognize limitations, and guide future research. This perspective highlights three key pathways through which beneficial soil microbes drive interactions among agricultural plants, insect pests, and their natural enemies through the lens of applied research: (1) alterations in plant growth rate, architecture, and nutritional quality; (2) modifications of plant secondary metabolites and phytohormones; and (3) modifications in the emissions of volatile organic compounds.

View Article and Find Full Text PDF

Can We Combine Mouthrinses With Probiotics? An Evaluation of Their Compatibility and Combined Therapy on Oral Biofilms.

J Periodontal Res

September 2025

Department of Oral Health Sciences, Periodontology and Oral Microbiology, KU Leuven, Leuven, Belgium.

Aim: Multiple oral pathologies requiring antiseptic mouthrinses for prevention or treatment. However, nonselective elimination of the microbes may also harm beneficial commensal, healthy bacteria. Promicrobial strategies, such as probiotics, aim to rebalance the oral microbiome rather than eradicate it; however, we hypothesised that their incorporation might be challenged due to the microbiome's inherent resistance to outsiders.

View Article and Find Full Text PDF

Isolation of a Novel Plant Growth-Promoting Dyella sp. From a Danish Natural Soil.

Environ Microbiol Rep

October 2025

DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.

Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.

View Article and Find Full Text PDF

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

Background And Aim: The global shift toward antibiotic-free poultry production necessitates sustainable alternatives to conventional growth promoters. Hydrolyzable tannins (HTs) from plants have shown antimicrobial, antioxidant, and gut-modulatory effects, making them promising feed additives. However, reliance on imported tannins from temperate species limits access for tropical producers, especially in Thailand.

View Article and Find Full Text PDF