98%
921
2 minutes
20
Heteroprotein complexes are formed by electrostatic interactions of oppositely charged proteins in a purely aqueous environment. Understanding the relationship between their structural and functional properties will contribute to their tailor-made applications. Therefore, this study investigated the protein conformation, assembling structure, and enzyme activity of soy protein isolate/lysozyme (SPI/LYS) complexes at mass ratios of 2:1 (soluble complex) and 1:1.3 (stoichiometric ratio). Electrostatic complexation increased the surface hydrophobicity of complexes. Their surface hydrophobicity decreased with increasing NaCl concentrations and reached the theoretical values at the critical salt concentration of 200 mM NaCl. Electrostatic complexation did not decrease the LYS activity (∼43,000 units/mg). SPI/LYS complexes exhibited flocculated structures in which the two proteins were unevenly distributed; these were typical amorphous complexes. High dilution disassembled these complexes over 5 μm into particles of ∼100 nm, and NaCl reduced the size of these particles. Immobilized water was detected in the complexes formed by particle flocculation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.135509 | DOI Listing |
J Agric Food Chem
September 2025
Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
Soy protein remains a key component of plant-based food development, but its application is challenged by inherent allergenicity. Previous work identified that native amyloid-like protein aggregates in soy 7S globulin that resist gastrointestinal digestion and exhibit pronounced antigenicity. Herein, we demonstrate that protein deamidation significantly enhances proteolysis under an infant gastrointestinal digestion model, leading to ∼80 and 50% reductions in IgG- and IgE-binding capacities, respectively.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Fats and Oils Department, Food Industries and Nutrition Research Institute National Research Centre Cairo Egypt.
This study developed a vegan chocolate spread using spray-dried plant-based milk powders (soy, lentil, and rice), fortified with nano-liposomal vitamin D3 and an oleogel-balanced omega fatty acid to enhance nutritional quality. The plant-based milk powders exhibited high protein (up to 26.8% in soy), fiber, and micronutrients.
View Article and Find Full Text PDFCurr Biol
September 2025
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia.
A new study shows that sucrose allocation within soybean roots by the sucrose transporter GmSWEET3c promotes rhizobial infection, nodulation, and symbiotic nitrogen fixation.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
For recovering whey soybean protein (WSP) from soybean whey wastewater (SWW) in food industry, a foam separation method for separating WSP by using temperature-responsive Janus sheets (MF-JNSs-PN) as foam stabilizer was established. MF-JNSs-PN was prepared by grafting the temperature-responsive polymer PNIPAM onto one side of the sheet inorganic material using BSA@Cu(PO)-MF as the template. MF-JNSs-PN has a good ability to stabilize the foam due to inducing the hydrophilicity and hydrophobicity transition by adjusting the temperature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.
Cultivating fat for edible tissue presents significant challenges, due to the high costs associated with growth and differentiation factors, alongside the poor viability of adipocytes resulting from cell clustering. Additionally, there is a gap in research regarding the rapid accumulation of fats within cells. To that end, this study presents the development of a biodegradable soy protein colloidosome system for an efficient application: direct delivery of oils into bovine satellite cells, enabling rapid intracellular fat accumulation without the need for adipogenic differentiation.
View Article and Find Full Text PDF