Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ultrasonic (US) transducers have been widely used in the field of ultrasonic and photoacoustic imaging system in recent years, to convert acoustic and electrical signals into each other. As the core part of imaging systems, US transducers have been extensively studied and achieved remarkable progress recently. Imaging systems employing conventional rigid US transducers impose certain constraints, such as not being able to conform to complex surfaces and comfortably come into contact with skin and the sample, and meet the applications of continuous monitoring and diagnosis. To overcome these drawbacks, significant effort has been made in transforming the rigid US transducers to become flexible and wearable. Flexible US transducers ensure self-alignment to complex surfaces and maximize the transferred US energy, resulting in high quality detection performance. The advancement in flexible US transducers has further extended the application range of imaging systems. This review is intended to summarize the most recent advances in flexible US transducers, including advanced functional materials optimization, representative US transducers designs and practical applications in imaging systems. Additionally, the potential challenges and future directions of the development of flexible US transducers are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866268PMC
http://dx.doi.org/10.3390/mi14010126DOI Listing

Publication Analysis

Top Keywords

imaging systems
16
flexible transducers
16
transducers
10
advances flexible
8
ultrasonic transducers
8
materials optimization
8
rigid transducers
8
complex surfaces
8
imaging
6
flexible
5

Similar Publications

Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF

This study investigates the impact of a defined starter culture on the fermentation of cocoa beans and its influence on the production of volatile and non-volatile compounds related to sensory quality. A microbial consortium comprising Saccharomyces cerevisiae, Pichia kudriavzevii, Levilactobacillus brevis, and Acetobacter okinawensis was selected based on their enzymatic activity and acid regulation properties. Fermentation trials showed that the starter culture enhanced the synthesis of key volatile compounds, particularly esters and higher alcohols, such as 2-phenylethanol and 2-phenylethyl acetate, which contribute floral and fruity aromas.

View Article and Find Full Text PDF

BackgroundAt present, nonvirtual neurovascular training can be performed using either an angiographic suite under fluoroscopic guidance (entailing radiation exposure) or direct optical visualization with a camera-based system. The angiographic approach offers high-fidelity visualization and catheter control but is constrained by the limited availability of such specialized facilities, whereas the camera-based approach can be implemented virtually anywhere yet lacks comparable realism in key procedural aspects. The objective of this work is to develop and evaluate a novel camera-based angiography training system (CBATS) that generates artificial angiograms and roadmaps, thereby combining the advantages of both imaging techniques while eliminating radiation exposure.

View Article and Find Full Text PDF

Objective: This study evaluated the outcomes of a 36-month follow-up after treatment with the ELLEX 2RT nanosecond laser.

Material And Methods: The study included 72 patients divided into two groups. Group 1 received 2RT nanosecond laser therapy, while group 2 did not undergo laser treatment.

View Article and Find Full Text PDF