Layer-by-Layer Deposited Multi-Modal PDAC/rGO Composite-Based Sensors.

Foods

Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Different environmental parameters, such as temperature and humidity, aggravate food spoilage, and different volatile organic compounds (VOCs) are released based on the extent of spoilage. In addition, a lack of efficient monitoring of the dosage of pesticides leads to crop failure. This could lead to the loss of food resources and food production with harmful contaminants and a short lifetime. For this reason, precise monitoring of different environmental parameters and contaminations during food processing and storage is a key factor for maintaining its safety and nutritional value. Thus, developing reliable, efficient, cost-effective sensor devices for these purposes is of utmost importance. This paper shows that Poly-(diallyl-dimethyl ammonium chloride)/reduced Graphene oxide (PDAC/rGO) films produced by a simple Layer-by-Layer deposition can be effectively used to monitor temperature, relative humidity, and the presence of volatile organic compounds as indicators for spoilage odors. At the same time, they show potential for electrochemical detection of organophosphate pesticide dimethoate. By monitoring the resistance/impedance changes during temperature and relative humidity variations or upon the exposure of PDAC/rGO films to methanol, good linear responses were obtained in the temperature range of 10-100 °C, 15-95% relative humidity, and 35 ppm-55 ppm of methanol. Moreover, linearity in the electrochemical detection of dimethoate is shown for the concentrations in the order of 10 µmol dm. The analytical response to different external stimuli and analytes depends on the number of layers deposited, affecting sensors' sensitivity, response and recovery time, and long-term stability. The presented results could serve as a starting point for developing advanced multi-modal sensors and sensor arrays with high potential for analytical applications in food safety and quality monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857774PMC
http://dx.doi.org/10.3390/foods12020268DOI Listing

Publication Analysis

Top Keywords

relative humidity
12
environmental parameters
8
volatile organic
8
organic compounds
8
pdac/rgo films
8
temperature relative
8
electrochemical detection
8
food
5
layer-by-layer deposited
4
deposited multi-modal
4

Similar Publications

The Citrus Under Protective Screen is a novel production system implemented to grow citrus free of huanglongbing disease vectored by Asian citrus psyllid, Diaphorina citri. Other significant pests such as mites, scales, thrips, mealybugs, and leafminers, as well as parasitoids and small predators, have been identified from Citrus Under Protective Screen and require management. Chrysomphalus aonidum (L.

View Article and Find Full Text PDF

Sand fly (Phlebotominae) activity and abundance in vertical strata in a tropical dry forest in the Yucatan Peninsula, Mexico.

Med Vet Entomol

September 2025

Laboratorio de Inmunología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México.

The study of population dynamics in a vertical forest gradient provides basic information on the aspects of insect vector natural history that influence the rate of pathogen transmission. In Mexico, these studies are remarkably limited for sand flies recognised as Leishmania vectors. This study analyses the temporal dynamics of sand fly species (Diptera: Psychodidae) along vertical strata of a tropical dry forest in Yucatán, Mexico, an area previously identified as a transmission hotspot for Leishmania mexicana.

View Article and Find Full Text PDF

Salmonella enterica in thinly sliced carrots and zucchini survives better at higher temperatures and higher relative humidity conditions.

Food Res Int

November 2025

Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil. Electronic address:

The global increase in demand for ready-to-eat foods has been accompanied by a concerning rise in salmonellosis outbreaks linked to minimally processed vegetables (MPV). This study evaluated S. enterica survival in minimally processed carrot and zucchini under different combined conditions of temperature (6, 9 and 12 °C) and relative humidity (RH; 75, 85 and 95 %) over 168 h.

View Article and Find Full Text PDF

Storage stability of an antioxidant tea prepared from purple corn (Zea mays L.) cob and stevia (Stevia rebaudiana Bert.) and its effects on biomarkers of oxidative stress in healthy humans.

Food Res Int

November 2025

Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima, Peru; Innovative Technology, Food and Health Research Group, Instituto de Investigación de Bioquímica y Biología Molecular, Unive

Tea is consumed worldwide, and it is highly appreciated by consumers as a functional, healthy, and natural drink. The objectives of this research were to evaluate (1) the storage stability and (2) the consumption effect on biomarkers of oxidative stress of an antioxidant tea prepared from purple corn cob and stevia (AOxTea). The AOxTea bags were subjected to storage environments of 75 or 85 % of relative humidity at 30, 40 and 50 °C for up to 19 days.

View Article and Find Full Text PDF

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF