Phosphate concentration is an important indicator of water quality, specifically for eutrophication levels in the presence of algae. Several analytical techniques have been proposed for phosphate monitoring, and most of them are based on indirect methods. In this study, we propose a new reagent-less direct method for the electrochemical detection of phosphate in aqueous solutions.
View Article and Find Full Text PDFWe have recently reported laser-induced fibers (LIF) as a promising nanomaterial that possesses good electrochemical activity and are easily manufacturable. In this paper, for the first time, the application of LIF as functionalization materials on laser-induced graphene (LIG) electrodes for the detection of nitrate is demonstrated. The as-fabricated LIF surfaces on Kapton were extracted by ultrasonication as a dispersion and were used to modify the surface of the LIG electrode.
View Article and Find Full Text PDFThe interaction of CO laser with polyimide results in the formation of laser-induced graphene (LIG) and other morphological transitions based on laser parameters, such as Laser-induced fibers (LIF) on the surface. However, a fundamental investigation of LIF, its properties and potential have not been explored until now. We aim therefore to provide novel insights into the LIF by characterization of its structural, electrical, electrochemical, and mechanical properties.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2023
In this paper, the relative humidity sensor properties of graphene oxide (GO) and graphene oxide/multiwalled nanotubes (GO/MWNTs) composites have been investigated. Composite sensors were fabricated by direct laser scribing and characterized using UV-vis-NIR, Raman, Fourier transform infrared, and X-ray photoemission spectroscopies, electron scanning microscopy coupled with energy-dispersive X-ray analysis, and impedance spectroscopy (IS). These methods confirm the composite homogeneity and laser reduction of GO/MWNT with dominant GO characteristics, while ISresults analysis reveals the circuit model for rGO-GO-rGO structure and the effect of MWNT on the sensor properties.
View Article and Find Full Text PDFThe transition of electrochemical sensors from lab-based measurements to real-time analysis requires special attention to different aspects in addition to the classical development of new sensing materials. Several critical challenges need to be addressed including a reproducible fabrication procedure, stability, lifetime, and development of cost-effective sensor electronics. In this paper, we address these aspects exemplarily for a nitrite sensor.
View Article and Find Full Text PDFDifferent environmental parameters, such as temperature and humidity, aggravate food spoilage, and different volatile organic compounds (VOCs) are released based on the extent of spoilage. In addition, a lack of efficient monitoring of the dosage of pesticides leads to crop failure. This could lead to the loss of food resources and food production with harmful contaminants and a short lifetime.
View Article and Find Full Text PDFBiosensors (Basel)
December 2022
Prostate cancer is one of the most frequently diagnosed male malignancies and can be detected by prostate-specific antigen (PSA) as a biomarker. To detect PSA, several studies have proposed using antibodies, which are not economical and require a long reaction time. In this study, we propose to use self-assembled thiolated single-strand DNA on electrodes functionalized by multi-walled carbon nanotubes (MWCNT) modified with gold nanoparticles (AuNPs) to realize a low-cost label-free electrochemical biosensor.
View Article and Find Full Text PDFSensors (Basel)
July 2021
This work proposes a model describing the dynamic behavior of sensing films based on functionalized MWCNT networks in terms of conductivity when exposed to time-variable concentrations of NO and operating with variable working temperatures. To test the proposed model, disordered networks of MWCNTs functionalized with COOH and Au nanoparticles were exploited. The model is derived from theoretical descriptions of the electronic transport in the nanotube network, of the NO chemisorption reaction and of the interaction of these two phenomena.
View Article and Find Full Text PDFElectrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window.
View Article and Find Full Text PDF