Connections between efficient control and spontaneous transitions in an Ising model.

Phys Rev E

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A system can be driven between metastable configurations by a time-dependent driving protocol, which uses external control parameters to change the potential energy of the system. Here we investigate the correspondence between driving protocols that are designed to minimize work and the spontaneous transition paths of the system in the absence of driving. We study the spin-inversion reaction in a 2D Ising model, quantifying the timing of each spin flip and heat flow to the system during both a minimum-work protocol and a spontaneous transition. The general order of spin flips during the transition mechanism is preserved between the processes, despite the coarseness of control parameters that are unable to reproduce more detailed features of the spontaneous mechanism. Additionally, external control parameters provide energy to each system component to compensate changes in internal energy, showing how control parameters are tuned during a minimum-work protocol to counteract underlying energetic features. This paper supports a correspondence between minimum-work protocols and spontaneous transition mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.064124DOI Listing

Publication Analysis

Top Keywords

control parameters
16
spontaneous transition
12
ising model
8
external control
8
energy system
8
minimum-work protocol
8
control
5
spontaneous
5
system
5
connections efficient
4

Similar Publications

Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.

View Article and Find Full Text PDF

Electrically Conductive Hydrogels for Wound Healing.

Adv Wound Care (New Rochelle)

September 2025

Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.

Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.

View Article and Find Full Text PDF

Restoring Synaptic Balance in Schizophrenia: Insights From a Thalamo-Cortical Conductance-Based Model.

Schizophr Bull

September 2025

Department of Psychology, Faculty of Health & Life Sciences, University of Exeter, Exeter, EX4 4QG, United Kingdom.

Background And Hypothesis: The dysconnectivity hypothesis of schizophrenia suggests that atypical neural communication underlies the disorder's diverse symptoms. Building on this framework, we propose that specific synaptic disturbances within thalamo-cortical circuits contribute to an imbalance in excitation and inhibition, leading to alteration in oscillations. Our study investigates these alterations and explores whether synaptic restoration can remediate neural activity of schizophrenia and align it with healthy patterns.

View Article and Find Full Text PDF

Many Will Enter, Few Will Win: Cost and Sensitivity of Exploratory Dynamics.

Biophys J

September 2025

Department of Physics and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

A variety of biomolecular systems rely on exploratory dynamics to reach target locations or states within a cell. Without a mechanism to remotely sense and move directly towards a target, the system must sample over many paths, often including resetting transitions back to the origin. We investigate how exploratory dynamics can confer an important functional benefit: the ability to respond to small changes in parameters with large shifts in the steady-state behavior.

View Article and Find Full Text PDF

Objectives: Machine-based cyclic combing of hair tresses under dry conditions is a proven method for evaluating hair strength and the impact of treatments. Recent advancements in image analysis allow for a detailed review of hair fragment lengths and quantities produced after specific combing cycles. Our aim is to provide an in-depth analysis of the kinetics of hair fragment formation.

View Article and Find Full Text PDF