Lotus Bee Pollen Extract Inhibits Isoproterenol-Induced Hypertrophy via JAK2/STAT3 Signaling Pathway in Rat H9c2 Cells.

Antioxidants (Basel)

Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bee pollen possesses an anti-cardiomyocyte injury effect by reducing oxidative stress levels and inhibiting inflammatory response and apoptosis, but the possible effect mechanism has rarely been reported. This paper explores the effect of the extract of lotus bee pollen (LBPE) on cardiomyocyte hypertrophy (CH) and its mechanism. The main components of LBPE were identified via UPLC-QTOF MS. An isoproterenol-induced rat H9c2 CH model was subsequently used to evaluate the protection of LBPE on cells. LBPE (100, 250 and 500 μg∙mL) reduced the surface area, total protein content and MDA content, and increased SOD activity and GSH content in CH model in a dose-dependent manner. Meanwhile, quantitative real-time PCR trials confirmed that LBPE reduced the gene expression levels of CH markers, pro-inflammatory cytokines and pro-apoptosis factors, and increased the Bcl-2 mRNA expression and Bcl-2/Bax ratio in a dose-dependent manner. Furthermore, target fishing, bioinformatics analysis and molecular docking suggested JAK2 could be a pivotal target protein for the main active ingredients in the LBPE against CH. Ultimately, Western blot (WB) trials confirmed that LBPE can dose-dependently inhibit the phosphorylation of JAK2 and STAT3. The results show that LBPE can protect against ISO-induced CH, possibly via targeting the JAK2/STAT3 pathway, also suggesting that LBPE may be a promising candidate against CH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854735PMC
http://dx.doi.org/10.3390/antiox12010088DOI Listing

Publication Analysis

Top Keywords

bee pollen
12
lbpe
9
lotus bee
8
rat h9c2
8
dose-dependent manner
8
trials confirmed
8
confirmed lbpe
8
pollen extract
4
extract inhibits
4
inhibits isoproterenol-induced
4

Similar Publications

Dairy products such as yogurt are nutritious food sources. Propolis is formed by mixing tree secretions with pollen and bee enzymes and has some functional properties. Basil seed is a rich source of hydrocolloids with outstanding functional properties.

View Article and Find Full Text PDF

Cross-taxa sublethal impacts of plant protection products on honeybee in-hive and zebrafish swimming behaviours at environmentally relevant concentrations.

Environ Int

August 2025

Department of Molecular Toxicology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany. Electr

Single and mixture exposure to plant protection products (PPPs) can affect non-target organisms at sublethal concentrations, yet the ecological relevance of behavioural effects remains underexplored. Behavioural disruptions can compromise survival and fitness, with exposure occurring across terrestrial and aquatic ecosystems. Here, we assess the behavioural impact of environmentally relevant PPP concentrations on two ecologically and toxicologically important model species: honeybees (Apis mellifera) and zebrafish (Danio rerio).

View Article and Find Full Text PDF

The increasing presence of micro- and nanoplastics in natural environments raises concerns about their interactions with biological particles such as pollen, that may act as carriers but could also undergo subtle chemical or structural changes, potentially influencing their ecological role. At the same time, the analytical and technological approaches used to investigate nanoplastic pollution mechanism can themselves raise concerns regarding their greenness. In this interdisciplinary study, we explored the interactions between multifloral bee pollen and polyethylene terephthalate nanoparticles (NanoPET) under environmentally relevant conditions using a multimodal analytical strategy combining AF4 (Asymmetrical Flow Field-Flow Fractionation) multidetection, Pyrolysis-GC-MS (py-GC-MS), Field Emission Scanning Electron Microscopy (FESEM), and dielectrophoresis-Raman spectroscopy (DEP-Raman).

View Article and Find Full Text PDF

Flower age increases male but not female performance through resource availability in a floral oil-producing species.

Plant Biol (Stuttg)

September 2025

Department of Botany, Postgraduate Program in Plant Biology, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil.

The high costs of floral maintenance modulate floral longevity. In some species with massive flowering and long floral lifespan, floral longevity increases overall display by changing petal colour, which ultimately counterbalances costs of floral maintenance. However, the colour of petals remains unchanged throughout the floral lifespan in some species with long floral longevity, and the reproductive consequences of such combined traits remain elusive.

View Article and Find Full Text PDF

Rape bee pollen outperforms camellia bee pollen in enhancing gut health and antioxidant capacity of wanxi white goose.

Poult Sci

August 2025

Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou, 233100, China; Local Goose Gene Bank in Anhui Province, Anhui Science and Technology University, Chuzhou 233100, China; Anhui Engineering Technolo

Bee pollen is rich in nutrients and bioactive compounds, exhibiting properties such as antioxidant effects, immune enhancement, and promotion of growth and development. However, there are limited studies on the use of bee pollen in goose breeding. This study aimed to investigate the effects of rape bee pollen (RBP) and camellia bee pollen (CBP) on production performance, intestinal morphology, digestive enzyme activity, antioxidant and immune indices, and gut microbiota in Wanxi white goose.

View Article and Find Full Text PDF