98%
921
2 minutes
20
Clinical use of antimicrobials faces great challenges from the emergence of multidrug-resistant pathogens. The overexpression of drug efflux pumps is one of the major contributors to multidrug resistance (MDR). Reversing the function of drug efflux pumps is a promising approach to overcome MDR. In the life-threatening fungal pathogen Candida albicans, the major facilitator superfamily (MFS) transporter Mdr1p can excrete many structurally unrelated antifungals, leading to MDR. Here we report a counterintuitive case of reversing MDR in C. albicans by using a natural product berberine to hijack the overexpressed Mdr1p for its own importation. Moreover, we illustrate that the imported berberine accumulates in mitochondria and compromises the mitochondrial function by impairing mitochondrial membrane potential and mitochondrial Complex I. This results in the selective elimination of Mdr1p overexpressed C. albicans cells. Furthermore, we show that berberine treatment can prolong the mean survival time of mice with blood-borne dissemination of Mdr1p overexpressed multidrug-resistant candidiasis. This study provides a potential direction of novel anti-MDR drug discovery by screening for multidrug efflux pump converters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2020.12.035 | DOI Listing |
Fungal Biol
October 2025
Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir
Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.
View Article and Find Full Text PDFJ Control Release
September 2025
Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy. Electronic address:
Bacterial infections have emerged as a critical global health concern. More specifically, antibiotic resistant infections, severely compromise the effectiveness of standard antimicrobial therapies and prompting the exploration of alternative strategies. Among these, nanocarriers (NCs) have gained considerable interest due to their ability to improve drug solubility, stability, and targeted delivery while minimizing off-target effects.
View Article and Find Full Text PDFBioorg Chem
September 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China. Electronic address:
Chemical investigation of the twigs and leaves of Euphorbia tirucalli afforded six undescribed tigliane glycosides, tirucalosides A-F (1-6), together with 12 known diterpenoids (7-18). Compound 1 represents a rare carbon skeleton bearing a 5/7/5/4-fused ring system, while compound 6 contains an unusual seco-glucoside substitution. Their structures were determined by a combination of an extensive spectroscopic analysis and acid hydrolysis experiment.
View Article and Find Full Text PDFBackground Fentanyl is a potent synthetic opioid widely used for pain management and anesthesia, but the high prevalence of its misuse and its key contribution to overdose fatalities in the United States have made it a major drug of concern. Although fentanyl's onset, duration, and toxicity depend on its pharmacokinetics and specific tissue distribution, most studies have focused primarily on plasma concentrations, leaving its distribution in critical tissues largely unexplored (this knowledge gap limits our understanding of fentanyl's clinical effects, tissue accumulation, and the factors influencing its efficacy and safety). Here, we report the radiosynthesis of [ C]fentanyl for PET imaging and present a preliminary whole-body pharmacokinetic study in rodents.
View Article and Find Full Text PDFObjectives: (formerly ) is a leading cause of invasive candidiasis and rapidly develops antifungal drug resistance during treatment. An increasing number of clinical isolates shows reduced susceptibility to echinocandins and azoles, leaving amphotericin B (AMB) as a last therapeutic option. Resistance of to this drug is rare and its underlying mechanisms are still not fully understood.
View Article and Find Full Text PDF