Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurological disorders are considered the most prominent cause of disability worldwide. The major hurdle in the management of neurological disorders is the existence of the blood-brain barrier (BBB), which hinders the entry of several therapeutic moieties. In recent years, oligonucleotides have gained tremendous attention for their target specificity, diminished dose and adverse effects, thereby halting disease progression. However, enzymatic degradation, rapid clearance, limited circulation and availability at the bio-active site, etc., limit its clinical translation. Nanomedicine has opened up a breadth of opportunities in the delivery of oligonucleotides across the BBB. This review addresses the pitfalls associated with oligonucleotide delivery in traversing the BBB via nanotherapeutics for the management of brain disorders. Regulatory perspectives pertaining to hastening the clinical translation of oligonucleotide-loaded nanocarriers for brain delivery have been highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.01.031DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
neurological disorders
8
clinical translation
8
nanomedicine based
4
based strategies
4
strategies oligonucleotide
4
oligonucleotide traversion
4
traversion blood-brain
4
barrier neurological
4
disorders considered
4

Similar Publications

Genetic modifiers of epilepsy: A narrative review.

Mol Cell Neurosci

September 2025

Department of Personalized & Molecular Medicine, Era University, Lucknow, India.

Epilepsy is a neurological disorder that shows strong genetic control on the timing and onset of symptoms and drug response variability. Some epilepsy syndromes have clear monogenic mutations but genes with control on the phenotype and severity of the disorder and drug sensitivity are present in the whole genetic profile. Genetic modifiers are not the cause of epilepsy but control significant networks such as synaptic plasticity and ion channels and neurodevelopment and neuroinflammation and therefore the reason why two individuals with the same primary mutations have different clinical courses.

View Article and Find Full Text PDF

Dual-action nanotherapy: Temozolomide-loaded, anti-PD-L1 scFv-functionalized lipid nanocarriers for targeted glioblastoma therapy.

Eur J Pharm Sci

September 2025

Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA; Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA. Electronic address:

Glioblastoma (GBM) is a highly malignant brain tumor with limited treatment options and poor prognosis. GBM exhibits resistance to conventional therapies, including temozolomide (TMZ), radiotherapy, and immunotherapy, partly due to immunosuppressive mechanisms such as programmed death-ligand 1 (PD-L1) overexpression. To address these challenges, we developed TMZ-loaded nanostructured lipid carriers (NLCs) conjugated with anti-PD-L1 single-chain variable fragments (scFv) for dual chemo-immunotherapy.

View Article and Find Full Text PDF

WNT7A and WNT7B, secreted by neural cells, are essential regulators of developmental brain angiogenesis and blood-brain barrier integrity. In brain endothelial cells, WNT7 proteins activate β-catenin signaling through the ligand-specific receptor complex GPR124-RECK and classical WNT receptors of the FZD and LRP families. Previous studies suggested that WNT7 isoforms assemble a GPR124-RECK-FZD-LRP5/6 multi-receptor complex for signaling.

View Article and Find Full Text PDF

Overcoming resistance in RET-altered cancers through rational inhibitor design and combination therapies.

Bioorg Chem

September 2025

Department of Pharmacy, Personalized Drug Research and Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

RET tyrosine kinase, a key regulator of cellular signaling, is abnormally activated due to mutations or fusions in various cancers, making it an important therapeutic target. Traditional multi-kinase inhibitors (MKIs, such as cabozantinib and vandetanib) exhibit significant side effects due to non-selective inhibition of targets like VEGFR, and also suffer from resistance associated with RET mutations (e.g.

View Article and Find Full Text PDF

Multiple biological barriers severely restrict the delivery efficiency of nanoparticles (NPs) to tumors. To overcome biological barriers, traditional NPs usually require a complex design, which increases the difficulty of clinical translation. Therefore, there appears to be a dilemma between the complex biological barriers and clinical requirement for a simple molecular structure of NPs.

View Article and Find Full Text PDF