Identification of HubHLH family and key role of HubHLH159 in betalain biosynthesis by activating the transcription of HuADH1, HuCYP76AD1-1, and HuDODA1 in pitaya.

Plant Sci

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 51

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Basic helix-loop-helix (bHLH) proteins are dimeric transcription factors (TFs) involved in various plant physiological and biological processes. Despite this, little is known about the molecular properties and roles of bHLH TFs in pitaya betalain biosynthesis. Here we report the identification of 165 HubHLH genes in H. undantus genome, their chromosomal distribution, physiochemical characteristics, conserved motifs, gene structure, phylogeny and synteny of HubHLH genes. Based on phylogenetic relationship analysis, the 165 HubHLHs were divided into 26 subfamilies and unequally distributed on the 11 chromosomes of pitaya. Based on the pitaya transcriptome data, a candidate gene HubHLH159 was obtained, and the real-time quantitative PCR analysis confirmed that HubHLH159 showed a high expression level in 'Guanhuahong' pitaya (red-pulp) at mature stage, indicating its role in betalain biosynthesis. HubHLH159 is a Group II protein and contains a bHLH domain. It is a nuclear protein with transcriptional activation activity. Dual luciferase reporter assays and virus-induced gene silencing (VIGS) experiments showed that HubHLH159 promotes betalain biosynthesis by activating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The results of the present study lay a new theoretical reference for the regulation of pitaya betalain biosynthesis and also provides as essential basis for the future analysis of the functions of HubHLH gene family.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2023.111595DOI Listing

Publication Analysis

Top Keywords

betalain biosynthesis
20
biosynthesis activating
8
huadh1 hucyp76ad1-1
8
hucyp76ad1-1 hudoda1
8
pitaya betalain
8
hubhlh genes
8
pitaya
6
hubhlh159
5
betalain
5
biosynthesis
5

Similar Publications

HpbHLH48 and HpbHLH64 facilitated betalain biosynthesis via transactivation of HpADH1, HpCYP76AD1-1, HpDODA1, and HpB5GT5 in pitaya.

Plant Physiol Biochem

August 2025

Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China. Electronic address:

The pericarp and pulp of the pitaya (Hylocereus polyrhizus cv. 'Zihonglong') accumulate high abundance of betalain, which are red-purple pigments with antioxidant activity. Previously, a basic helix-loop-helix transcription factor, named bHLH159, has been identified to facilitate betalain biosynthesis in pitaya via the transactivation of arginine dehydrogenase 1 (ADH1) and 4,5-DOPA extradiol dioxygenase 1 (DODA1).

View Article and Find Full Text PDF

A RUBY Reporter for Efficient Banana Transformation and Development of Betalain-Rich Germplasm.

Int J Mol Sci

August 2025

Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou

Bananas are economically important crops valued for both their nutritional and dietary uses. However, the global banana industry suffers from a narrow base dominated by a single variety. Developing novel varieties enriched in health-promoting compounds such as betalains can help diversify banana germplasm and meet evolving consumer demands.

View Article and Find Full Text PDF

Amino acid transporters play crucial roles in plant nitrogen metabolism but also in defense responses. AAT, an apparent amino acid transporter encoded by () at the soybean locus, contributes to resistance to soybean cyst nematode (SCN), although the function of AAT remains elusive. In this study, we discovered that overexpression of in soybean roots enhances the betalain pigment synthesis driven by a transgene cassette, potentially through its transporter activity affecting tyrosine levels and amino acid homeostasis.

View Article and Find Full Text PDF

The increasing global demand for diverse and health-promoting foods has led to the expansion of tropical fruit cultivation beyond their native regions, notably into the Mediterranean area. This shift necessitates a deeper understanding of their phytochemical profiles, as environmental factors in new cultivation contexts can significantly influence the biosynthesis of their bioactive compounds. In this study, we explored the phytochemical and antioxidant properties of pitaya fruit, focusing on chemical fractionation and the link between its bioactive components and functional benefits.

View Article and Find Full Text PDF

Betanin-Mediated Antiherbivore Defense: Functional Significance of Red Pigmentation in Epidermal Salt Bladders of Chenopodium album Leaves.

J Chem Ecol

August 2025

State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.

Plant coloration, predominantly regulated by various natural plant pigments, has been hypothesized to serve crucial ecological functions in plant-animal interactions. Betalains are a rare class of plant pigments synthesized exclusively in specific families within the Caryophyllales order. Their biosynthesis is restricted by the availability of nitrogen.

View Article and Find Full Text PDF