Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Precise design of low-cost, efficient and definite electrocatalysts is the key to sustainable renewable energy. Herein, this work develops a targeted-anchored and subsequent spontaneous-redox strategy to synthesize nickel-iron layered double hydroxide (LDH) nanosheets anchored with monodispersed platinum (Pt) sites (Pt@LDH). Intermediate metal-organic frameworks (MOF)/LDH heterostructure not only provides numerous confine points to guarantee the stability of Pt sites, but also excites the spontaneous reduction for Pt . Electronic structure, charge transfer ability and reaction kinetics of Pt@LDH can be effectively facilitated by the monodispersed Pt moieties. As a result, the optimized Pt@LDH that with the 5% ultra-low content Pt exhibits the significant increment in electrochemical water splitting performance in alkaline media, which only afford low overpotentials of 58 mV at 10 mA cm for hydrogen evolution reaction (HER) and 239 mV at 10 mA cm for oxygen evolution reaction (OER), respectively. In a real device, Pt@LDH can drive an overall water-splitting at low cell voltage of 1.49 V at 10 mA cm , which can be superior to most reported similar LDH-based catalysts. Moreover, the versatility of the method is extended to other MOF precursors and noble metals for the design of ultrathin LDH supported monodispersed noble metal electrocatalysts promoting research interest in material design.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202207044DOI Listing

Publication Analysis

Top Keywords

water splitting
8
evolution reaction
8
monodispersed
4
monodispersed sites
4
sites supported
4
supported nife-ldh
4
nife-ldh synchronous
4
synchronous anchoring
4
anchoring reduction
4
reduction high
4

Similar Publications

The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.

View Article and Find Full Text PDF

The rational design of electrode materials with outstanding energy and power density for supercapacitors (SCc) and high-performance electrocatalysts in alkaline media plays an indispensable role in the application of energy storage and overall water splitting. In this paper, we prepared NiCoFe layered ternary hydroxides (LTH) using a hydrothermal synthesis method. The sample with a Ni/Co/Fe ratio of 1:2:0.

View Article and Find Full Text PDF

Boosted photocatalytic water splitting over a direct Z-scheme CdTe/CN van der Waals heterojunction: a first-principles insight into photocatalytic activity.

Phys Chem Chem Phys

September 2025

Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, China.

The quest for sustainable and clean energy sources has led to significant research into photocatalytic water splitting, a process that converts solar energy into hydrogen fuel. This study demonstrates constructing a high-performance CdTe/CN van der Waals heterojunction for solar-driven water splitting hydrogen evolution. The proposed CdTe/CN heterojunction, investigated using first-principles calculations, integrates favorable structural stability and features a direct bandgap of 1.

View Article and Find Full Text PDF

Water electrolysis for hydrogen production has become an industrial focus in the era of green chemistry due to its high purity of hydrogen production and environmentally friendly, efficient process. As the half reaction of water splitting at the anode, the oxygen evolution reaction (OER) features a complex and sluggish process that restricts the efficiency of water splitting. The mechanism of OER varies with different electrolytes.

View Article and Find Full Text PDF

Tailoring Active Sites in Amorphous NiFe-MOFs through Pyridine Ligand Coordination for Enhanced Oxygen Evolution Performance.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.

The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.

View Article and Find Full Text PDF