Fully automatic segmentation and monitoring of choriocapillaris flow voids in OCTA images.

Comput Med Imaging Graph

VARPA Group, Biomedical Research Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain; CITIC-Research Center of Information and Communication Technologies, University of A Coruña, A Coruña, Spain. Electronic address:

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optical coherence tomography angiography (OCTA) is a non-invasive ophthalmic imaging modality that is widely used in clinical practice. Recent technological advances in OCTA allow imaging of blood flow deeper than the retinal layers, at the level of the choriocapillaris (CC), where a granular image is obtained showing a pattern of bright areas, representing blood flow, and a pattern of small dark regions, called flow voids (FVs). Several clinical studies have reported a close correlation between abnormal FVs distribution and multiple diseases, so quantifying changes in FVs distribution in CC has become an area of interest for many clinicians. However, CC OCTA images present very complex features that make it difficult to correctly compare FVs during the monitoring of a patient. In this work, we propose fully automatic approaches for the segmentation and monitoring of FVs in CC OCTA images. First, a baseline approach, in which a fully automatic segmentation methodology based on local contrast enhancement and global thresholding is proposed to segment FVs and measure changes in their distribution in a straightforward manner. Second, a robust approach in which, prior to the use of our segmentation methodology, an unsupervised trained neural network is used to perform a deformable registration that aligns inconsistencies between images acquired at different time instants. The proposed approaches were tested with CC OCTA images collected during a clinical study on the response to photodynamic therapy in patients affected by chronic central serous chorioretinopathy (CSC), demonstrating their clinical utility. The results showed that both approaches are accurate and robust, surpassing the state of the art, therefore improving the efficacy of FVs as a biomarker to monitor the patient treatments. This gives great potential for the clinical use of our methods, with the possibility of extending their use to other pathologies or treatments associated with this type of imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2022.102172DOI Listing

Publication Analysis

Top Keywords

octa images
16
fully automatic
12
automatic segmentation
8
segmentation monitoring
8
flow voids
8
blood flow
8
fvs distribution
8
segmentation methodology
8
fvs
7
octa
6

Similar Publications

Purpose: To describe the clinical and multimodal imaging features of a novel form of macular neovascularization (MNV), designated Type 4 MNV, defined by mixed Type 1 and Type 2 neovascularization (NV), extensive intraretinal anastomotic NV, and central posterior hyaloid fibrosis (CPHF).

Methods: This multicenter retrospective observational case series included patients with neovascular age-related macular degeneration (AMD) exhibiting both Type 1 and 2 MNV and an overlying anastomotic intraretinal NV network. This was confirmed with OCT and OCT angiography (OCTA).

View Article and Find Full Text PDF

Purpose: To investigate associations among expanded field swept-source optical coherence tomography angiography (SS-OCTA) biomarkers and the development of tractional retinal detachment (TRD) in patients with proliferative diabetic retinopathy (PDR).

Methods: Patients with PDR without TRD at baseline were imaged with SS-OCTA. Quantitative and qualitative OCTA metrics were independently evaluated by two trained graders.

View Article and Find Full Text PDF

Deep Learning Estimation of 24-2 Visual Field Map from Optic Nerve Head Optical Coherence Tomography Angiography.

J Glaucoma

September 2025

Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, United States.

Precis: Artificial intelligence applied to OCTA images demonstrated high accuracy in estimating 24-2 visual field maps by leveraging information from pararpapillary area.

Purpose: To develop deep learning (DL) models estimating 24-2 visual field (VF) maps from optical coherence tomography angiography (OCTA) optic nerve head (ONH) en face images.

Methods: A total of 3148 VF OCTA pairs were collected from 994 participants (1684 eyes).

View Article and Find Full Text PDF

Purpose: To report on the real-world experience of using intravitreal pegcetacoplan for the treatment of geographic atrophy (GA) in age-related macular degeneration (AMD).

Design: Retrospective interventional case series.

Methods: Eyes with symptomatic GA secondary to AMD were treated with 15mg of intravitreal pegcetacoplan and participated in an ongoing prospective swept-source optical coherence tomography angiography (SS-OCTA) imaging study.

View Article and Find Full Text PDF

Cavity Hyperreflective-content and Septum's Motion Artifact in Optical Coherence Tomography Angiography.

Photodiagnosis Photodyn Ther

September 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China. Electronic address:

Purpose: To characterize the cavity hyperreflective-content and septum's motion artifact (CHASMA) in en face optical coherence tomography angiography (OCTA) across multiple ocular fundus abnormalities.

Methods: This was a cross-sectional, observational study. Subjects with extravascular OCTA signals arising from the cavity's hyperreflective-content and/or septum were enrolled.

View Article and Find Full Text PDF