Ternary Synergy of Lys, Dopa, and Phe Results in Strong Cohesion of Peptide Films.

ACS Appl Bio Mater

Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synergistic interactions between 3,4-dihydroxyphenylalanine (Dopa, Y*), cationic residues, and the aromatic rings have been recently highlighted as influential factors that enhance the underwater adhesion strength of mussel foot proteins and their derivatives. In this study, we report the first ever evidence of a cation-catechol-benzene ternary synergy between Y*, lysine (Lys, K), and phenylalanine (Phe, F) in adhesive peptides. We synthesized three hexapeptides containing a different combination of Y*, K, and F, , (KY*), (KF), and (KY*F), respectively, exploring the relationship between the cohesive performance and molecular architecture of peptides. The peptide with the (KY*F) sequence displays the strongest underwater cohesion energy of 10.3 ± 0.3 mJ m from direct nanoscale surface force measurements. Combined with molecular dynamics simulation, we demonstrated that there are more bonding interactions (including cation-π, π-π, and hydrogen bond interactions) in (KY*F) compared to the other two peptides. In addition, peptide (KY*F) still shows the strongest cohesive energies of 7.6 ± 0.7 and 3.7 ± 0.5 mJ m in acidic and high-ionic strength environments, respectively, although the cohesive energy decreases compared to the value in pure water. Our results further explain the underwater cohesion mechanisms combining multiple interactions and offer insights on designing Dopa containing underwater adhesives.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.2c01009DOI Listing

Publication Analysis

Top Keywords

ternary synergy
8
peptide ky*f
8
underwater cohesion
8
synergy lys
4
lys dopa
4
dopa phe
4
phe strong
4
strong cohesion
4
cohesion peptide
4
peptide films
4

Similar Publications

Proton Flux Engineering via Built-in Electric Fields in N-doped CuO@CoO@Ni(OH) Heterostructure for Rechargeable Zn-NO /5-Hydroxymethylfurfural Multielectron Transfer Systems.

Angew Chem Int Ed Engl

September 2025

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China.

Electrocatalytic coupling of nitrate reduction (NORR) to ammonia with 5-hydroxymethylfurfural (HMF) oxidation to 2,5-furandicarboxylic acid (FDCA) enables simultaneous wastewater remediation and biomass valorization. However, developing efficient bifunctional electrocatalysts for these multiproton-coupled electron transfer reactions remains challenging as conventional single-active-site catalysts inherently suffer from linear scaling relationships between intermediates and adsorption energies, particularly sluggish proton transfer. To address this, we engineered a triphasic N-doped CuO@CoO@Ni(OH) heterostructure with a gradient built-in electric field (BIEF), which synergistically enhances interfacial charge polarization and accelerates proton transport through dynamic coupling effects in both reactions: sufficient *H supply for NORR and fast Ni(OH)/NiOOH redox cycling during HMF oxidation (HMFOR), thus achieving unprecedented bifunctional performance: at - 0.

View Article and Find Full Text PDF

Trimetallic synergy-enhanced multidimensional composite separator for high-rate lithium-sulfur batteries.

J Colloid Interface Sci

August 2025

Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

The practical application of lithium‑sulfur (LiS) batteries is often restricted by the uncontrolled diffusion of lithium polysulfides (LiPSs) and their intrinsically sluggish redox kinetics. To address these limitations, we designed a multidimensional composite separator by anchoring Zn-Co-Ni-S nanocrystals onto alkalized two-dimensional transition metal carbide/nitride (MXene) nanosheets, followed by the incorporation of one-dimensional carbon nanotubes (CNTs), yielding a robust and highly conductive interfacial architecture. This multidimensional configuration combines physical confinement, strong chemisorption, and catalytic enhancement to regulate sulfur redox behavior effectively.

View Article and Find Full Text PDF

Halogenation-Engineered Acceptor Enables 20.14% Efficiency in Hydrocarbon-Solvent Processed OSCs: From Binary Trade-Offs to Ternary Synergy in Exciton and Energy Loss Management.

Angew Chem Int Ed Engl

September 2025

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.

Halogenation emerges as a key strategy to enhance the performance of organic solar cells (OSCs) by tuning molecular packing, energy levels, and charge dynamics. Here, we report three new benzo[a]phenazine-core small-molecule acceptors, namely NA5, NA6, and NA7, and systematically evaluate their photovoltaic properties in o-xylene-processed binary and ternary OSCs. Halogenation significantly strengthens intermolecular interactions, improves charge carrier mobility, and facilitates exciton dissociation, leading to a remarkable increase in binary device efficiencies from ∼2% (NA5) to over 17% (NA6, NA7).

View Article and Find Full Text PDF

The development of efficient alkaline water electrolysis catalysts remains challenged by sluggish hydrogen evolution kinetics and insufficient active sites. Herein, a Cu-P-Co ternary electrocatalyst with pine-needle-like nanorod/nanosheet hybrid architecture is fabricated on nickel foam (Cu-P-Co/NF) via one-step electrodeposition. The introduction of Cu and P elements enables the formation of a well-defined CuP nanorod / CoP nanosheet heterostructure.

View Article and Find Full Text PDF

Enhanced overall water splitting performance in alkaline solutions using hollow nanocage nickel‑cobalt‑iron layered double hydroxide derived from zeolitic imidazolate framework-67: The synergy of fast etching and metallic ions.

J Colloid Interface Sci

December 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The development of highly active, cost-effective, and durable electrocatalysts is critical for efficient water splitting. Layered double hydroxides (LDHs), with their excellent conductivity, large surface area, and three-dimensional (3D) open framework facilitating mass transport and active site accessibility, are ideal candidates. In this work, a ternary nickel‑cobalt‑iron LDH (NiCoFe-LDH) is synthesized via metal ion etching, leveraging synergistic intermetallic electronic interactions to enhance electrocatalytic performance.

View Article and Find Full Text PDF