A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Halogenation-Engineered Acceptor Enables 20.14% Efficiency in Hydrocarbon-Solvent Processed OSCs: From Binary Trade-Offs to Ternary Synergy in Exciton and Energy Loss Management. | LitMetric

Halogenation-Engineered Acceptor Enables 20.14% Efficiency in Hydrocarbon-Solvent Processed OSCs: From Binary Trade-Offs to Ternary Synergy in Exciton and Energy Loss Management.

Angew Chem Int Ed Engl

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Halogenation emerges as a key strategy to enhance the performance of organic solar cells (OSCs) by tuning molecular packing, energy levels, and charge dynamics. Here, we report three new benzo[a]phenazine-core small-molecule acceptors, namely NA5, NA6, and NA7, and systematically evaluate their photovoltaic properties in o-xylene-processed binary and ternary OSCs. Halogenation significantly strengthens intermolecular interactions, improves charge carrier mobility, and facilitates exciton dissociation, leading to a remarkable increase in binary device efficiencies from ∼2% (NA5) to over 17% (NA6, NA7). However, halogenation also increases charge-transfer state character, which can induce higher nonradiative recombination and energy loss. Despite this drawback, the enhanced driving force for charge separation and improved morphological order enabled by halogenation outweigh the negative effects on energy loss. Notably, incorporation of NA7 into the PM6:BTP-eC9 ternary system optimizes blend morphology, suppresses nonradiative recombination, and thus achieves a record power conversion efficiency of 20.14% (certified 19.93%)-the highest reported for OSCs processed with hydrocarbon solvents. These findings highlight the dual role of halogenation in modulating both beneficial and detrimental aspects of device energetics, providing new insights into molecular design strategies for high-performance, environmental-friendly OSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202512237DOI Listing

Publication Analysis

Top Keywords

energy loss
12
na6 na7
8
nonradiative recombination
8
oscs
5
halogenation
5
halogenation-engineered acceptor
4
acceptor enables
4
enables 2014%
4
2014% efficiency
4
efficiency hydrocarbon-solvent
4

Similar Publications