98%
921
2 minutes
20
Low-cost particulate matter (PM) sensors provide new methods for monitoring occupational exposure to hazardous substances, such as flour dust. These devices have many possible benefits, but much remains unknown about their performance for different exposure monitoring strategies in the workplace. We explored the performance of PM sensors for four different monitoring strategies (time-weighted average and high time resolution, each quantitative and semi-quantitative) for assessing occupational exposure using low-cost PM sensors in a field study in the industrial bakery sector. Measurements were collected using four types of sensor (PATS+, Isensit, Airbeam2, and Munisense) and two reference devices (respirable gravimetric samplers and an established time-resolved device) at two large-scale bakeries, spread over 11 participants and 6 measurement days. Average PM2.5 concentrations of the low-cost sensors were compared with gravimetric respirable concentrations for 8-h shift periods and 1-min PM2.5 concentrations of the low-cost sensors were compared with time-resolved PM2.5 data from the reference device (quantitative monitoring strategy). Low-cost sensors were also ranked in terms of exposure for 8-h shifts and for 15-min periods with a shift (semi-quantitative monitoring strategy). Environmental factors and methodological variables, which can affect sensor performance, were investigated. Semi-quantitative monitoring strategies only showed more accurate results compared with quantitative strategies when these were based on shift-average exposures. The main factors that influenced sensor performance were the type of placement (positioning the devices stationary versus personal) and the company or workstation where measurements were collected. Together, these findings provide an overview of common strengths and drawbacks of low-cost sensors and different ways these can be applied in the workplace. This can be used as a starting point for further investigations and the development of guidance documents and data analysis methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annweh/wxac088 | DOI Listing |
Anal Methods
September 2025
State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
Current detection methods for often suffer from lengthy procedures, significant technical limitations, high probe costs, and poor long-term storage stability. Herein, an "on-off-on" fluorescent probe is developed based on mannose-lectin recognition for the rapid and quantitative detection of . The probe utilizes mannose-grafted carbon dots (g-CDs-M), which specifically recognize through interaction with lectins on its surface.
View Article and Find Full Text PDFLangmuir
September 2025
School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
Electrochemical sensors capable of detecting different types of biomolecules using a single electrode are highly desirable for simplifying analytical platforms and expanding their practical applicability. Herein, we develop a multifunctional electrochemical sensor based on a 3D honeycomb-like porous rGO/PPy-POM composite film for the independent detection of dopamine (DA) and folic acid (FA), two chemically distinct and clinically relevant biomolecules. The electrode is fabricated through a facile, low-cost, and environmentally friendly breath figure method to create a 3D porous reduced graphene oxide (rGO) framework, followed by codeposition of polypyrrole (PPy) and polyoxometalates (POMs).
View Article and Find Full Text PDFIEEE Internet Things J
August 2025
Geometric Media Lab, School of Arts, Media and Engineering and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA.
Human gait analysis with wearable sensors has been widely used in various applications, such as daily life healthcare, rehabilitation, physical therapy, and clinical diagnostics and monitoring. In particular, ground reaction force (GRF) provides critical information about how the body interacts with the ground during locomotion. Although instrumented treadmills have been widely used as the gold standard for measuring GRF during walking, their lack of portability and high cost make them impractical for many applications.
View Article and Find Full Text PDFCell Physiol Biochem
August 2025
Departamento de Procesos Químicos, Alimentos y Biotecnología. Facultad de Ingeniería y Ciencias Aplicadas. Universidad Técnica de Manabí, Portoviejo, Ecuador.
Background/aims: The quantification of amino acids in the dairy industry is necessary for quality control and for the formulation of functional foods. Thus, the development of enzymatic biosensors requires a detailed study of enzyme kinetics. Parameters such as KM and Vmax are necessary to optimize the sensitivity and specificity of the biosensor.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDF