Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previous studies have demonstrated that paternal caregiving behaviors are reliant on neural pathways similar to those supporting maternal care. Interestingly, a greater variability exists in parental phenotypes in men than in women among individuals and mammalian species. However, less is known about when or how such variability emerges in men. We investigated the longitudinal changes in the neural, hormonal, and psychological bases of expression of paternal caregiving in humans throughout pregnancy and the first 4 months of the postnatal period. We measured oxytocin and testosterone, paternity-related psychological traits, and neural response to infant-interaction videos using fMRI in first-time fathers and childless men at three time points (early to mid-pregnancy, late pregnancy, and postnatal). We found that paternal-specific brain activity in prefrontal areas distinctly develops during middle-to-late pregnancy and is enhanced in the postnatal period. In addition, among fathers, the timing of the development of prefrontal brain activity was associated with specific parenting phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn_a_01953DOI Listing

Publication Analysis

Top Keywords

humans pregnancy
8
paternal caregiving
8
postnatal period
8
brain activity
8
development paternal
4
paternal brain
4
brain humans
4
pregnancy
4
pregnancy previous
4
previous studies
4

Similar Publications

The frequency and severity of heat waves are expected to worsen with climate change. Exposure to extreme heat, or prolonged unusually high temperatures, are associated with increased morbidity and mortality. The fetus, infant, and young child are more sensitive to higher temperatures than older children and most adults given that they are rapidly developing.

View Article and Find Full Text PDF

Profiling the metabolome of adenomyosis-associated infertility patients to predict the pregnancy outcome of frozen embryo transfer.

Front Endocrinol (Lausanne)

September 2025

State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University, Third Hospital, Beijing, China.

Objective: This study explores the metabolic profiles in the peripheral blood of infertile patients with adenomyosis (ADM) to identify key metabolites affecting pregnancy outcomes in these patients undergoing frozen embryo transfer (FET). Our goal is to create a metabolite-based clinical prediction model for pregnancy outcomes in adenomyosis-associated infertility.

Methods: This prospective cohort study from the Reproductive Center at Peking University Third Hospital enrolled 94 infertile patients with adenomyosis and control (CTRL) patients undergoing FET.

View Article and Find Full Text PDF

Purpose: Spinal anesthesia-induced hypotension can cause detrimental effects on both the mother and the fetus, and it remains a significant concern in obstetric anesthesia. The use of vasopressors is considered the most reliable and effective approach. Previous studies have shown that norepinephrine appears to be superior to phenylephrine in maintaining maternal heart rate and cardiac output.

View Article and Find Full Text PDF

Background Subclinical hypothyroidism (SCH) in pregnancy poses serious maternal and fetal risks, including miscarriage, gestational diabetes, and neurodevelopmental impairment. Despite clear international guidelines like those from the American Thyroid Association (ATA), global practice remains inconsistent. In Saudi Arabia, where SCH prevalence among pregnant women is notably high (13%), there is limited national data on how closely physicians follow these guidelines.

View Article and Find Full Text PDF

The effects of circadian rhythm on reproductive functions.

Zygote

September 2025

International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.

Circadian rhythms are intrinsic, endogenously generated cycles that regulate various physiological processes, including reproductive functions. These rhythms are orchestrated by a network of core clock genes and are influenced by external environmental cues, primarily the light-dark cycle. Disruptions in circadian rhythms can have profound effects on fertility in both males and females, impacting processes such as the estrous cycle, ovulation, sperm production, implantation and pregnancy maintenance.

View Article and Find Full Text PDF