Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Guard cells control the opening of stomatal pores in the leaf surface, with the use of a network of protein kinases and phosphatases. Loss of function of the CBL-interacting protein kinase 23 (CIPK23) was previously shown to decrease the stomatal conductance, but the molecular mechanisms underlying this response still need to be clarified. CIPK23 was specifically expressed in Arabidopsis guard cells, using an estrogen-inducible system. Stomatal movements were linked to changes in ion channel activity, determined with double-barreled intracellular electrodes in guard cells and with the two-electrode voltage clamp technique in Xenopus oocytes. Expression of the phosphomimetic variant CIPK23 enhanced stomatal opening, while the natural CIPK23 and a kinase-inactive CIPK23 variant did not affect stomatal movements. Overexpression of CIPK23 repressed the activity of S-type anion channels, while their steady-state activity was unchanged by CIPK23 and CIPK23 . We suggest that CIPK23 enhances the stomatal conductance at favorable growth conditions, via the regulation of several ion transport proteins in guard cells. The inhibition of SLAC1-type anion channels is an important facet of this response.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.18708DOI Listing

Publication Analysis

Top Keywords

guard cells
20
anion channels
12
cipk23
10
protein kinase
8
slac1-type anion
8
arabidopsis guard
8
stomatal opening
8
stomatal conductance
8
stomatal movements
8
cipk23 cipk23
8

Similar Publications

Excessive P effects in the growth of Solanum lycopersicum related to stomatal closing mediated by ABA and ethylene.

Plant Sci

September 2025

Instituto de Ciências Naturais (ICN), Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Centro, zip code 37130-001, Alfenas, MG, Brazil. Electronic address:

Phosphorus (P) is an essential macronutrient for plant growth and development; however, both its deficiency and excess can be harmful. Although the effects of excess P are still poorly understood, research has shown that plants exposed to excessive levels of P exhibit reductions in stomatal conductance, photosynthesis, and growth. The aim of this study was to investigate the effect of different P concentrations on stomatal responses, photochemical parameters, growth, and development of three Solanum lycopersicum genotypes: wild type, Never ripe (lower sensitivity to ethylene), and Notabilis (deficient in ABA production).

View Article and Find Full Text PDF

Differential regulation of calcium-activated plant kinases in Arabidopsis thaliana.

Plant J

September 2025

Biological Information Processing Group, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.

The decoding of calcium signals by plant calcium-dependent kinases (CPKs) is not fully understood yet. Based on kinetic in vitro measurements of the activity of several CPK proteins, their individual activity profile was modeled and coupled to cytosolic calcium concentration changes from in vivo measurements of guard cells and epidermal leaf cells. In addition, computationally produced surrogate data were used.

View Article and Find Full Text PDF

The rice cation/calcium exchanger OsCCX2 is involved in calcium signal clearance and osmotic tolerance.

J Integr Plant Biol

September 2025

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.

Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis.

View Article and Find Full Text PDF

Cadmium (Cd) stress severely hampers plant growth in forest ecosystems. Although magnesium oxide nanoparticles (MgONPs) are known to reduce Cd toxicity in numerous plant species, their detoxification mechanisms in Moso bamboo () remain unexplored. The present study investigates how MgONPs mitigate the Cd-induced phytotoxic effects in by examining morpho-physiological and cellular oxidative repair mechanisms.

View Article and Find Full Text PDF

A leaf is an organ composed of different tissues that fulfill specific functions. We hypothesized that since cells in vascular or mesophyll tissues as well as in stoma are developmentally tuned to operate their functions, mitochondria from these cells could exhibit significant metabolic differences. Using the IMTACT method, mitochondria were isolated from these three specific cell types, and the subsequent proteomes were analyzed.

View Article and Find Full Text PDF