Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The objective of this work was to evaluate the effects following exposure (96 h) of South American catfish (R. quelen) embryos to active ingredients and commercial formulations from atrazine and glyphosate, isolated and in mixtures, at environmentally relevant concentrations. While the survival rates were not affected, sublethal effects were evidenced after exposure. The most frequent deformities were fin damage and axial and thoracic damage. The mixture of active ingredients caused an increase in SOD and GST, differing from the treatment with the mixture of commercial formulations. The activity of AChE was significantly reduced following the treatment with the active ingredient atrazine and in the mixture of active ingredients. In general, herbicide mixtures were responsible for causing more toxic effects to R. quelen embryos. Therefore, these responses showed to be suitable biomarkers of herbicides' exposure, in addition to generating more environmentally relevant baseline data for re-stablishing safety levels of these substances in aquatic bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2022.104057DOI Listing

Publication Analysis

Top Keywords

environmentally relevant
12
quelen embryos
12
active ingredients
12
sublethal effects
8
atrazine glyphosate
8
relevant concentrations
8
south american
8
american catfish
8
commercial formulations
8
mixture active
8

Similar Publications

Superinfection exclusion (SIE) is a finely tuned virus-virus interaction mechanism closely linked to the viral infection cycle. However, the mechanistic basis of SIE remains incompletely understood in plant viruses, particularly among negative-sense, single-stranded RNA viruses. In this study, we first describe the development of an efficient reverse genetics system for the plant nucleorhabdovirus Physostegia chlorotic mottle virus (PhCMoV) by codon optimisation of the large polymerase coding sequence.

View Article and Find Full Text PDF

Evaluating the contribution of individual variation in parasite-mediated anorexia to trophic cascades.

Ecology

September 2025

Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA.

Recent evidence suggests that parasite-mediated reductions in food intake (i.e., anorexia) in herbivores can trigger trophic cascades that increase producer biomass.

View Article and Find Full Text PDF

Concentration-specific effects of micropollutants on microbial communities and antibiotic resistance genes in activated sludge systems.

J Hazard Mater

August 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Micropollutants are widespread in wastewater systems and can impact microbial communities and the transfer of antibiotic resistance genes (ARGs). Nevertheless, the specific concentration thresholds for these effects under environmental conditions remain largely unknown. This study evaluated six micropollutants at five environmentally relevant concentrations (0.

View Article and Find Full Text PDF

The increasing presence of nanoplastics (NPs) in terrestrial environments raises concerns about their bioavailability and potential impacts on crops. This study investigates the uptake and translocation of environmentally relevant polystyrene nanoplastics (eNPs-PS) in Hordeum vulgare L. via soil.

View Article and Find Full Text PDF

Endothelial to mesenchymal transition: a central mechanism in diabetes-induced vascular pathology.

Korean J Physiol Pharmacol

September 2025

Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.

Diabetes mellitus is a major global health concern associated with micro-and macrovascular complications. Among the diverse mechanisms that contribute to vascular dysfunction in diabetes, endothelial to mesenchymal transition (EndMT) has emerged as a key pathological process. EndMT involves the loss of endothelial cell characteristics and the acquisition of mesenchymal features, resulting in impaired endothelial function, increased fibrosis, and inflammation.

View Article and Find Full Text PDF