A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microbial community diversity and function analysis of Debeaux in rhizosphere soil of farmlands in Southwest China. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding how microbial communities affect plant growth is crucial for sustainable productivity and ecological health. However, in contrast with the crop system, there is limited information on the microbial community associated with the medicinal plant. We observed that altitude was the most influential factor on the soil microbial community structures of Debeaux. For community composition, bacterial reads were assigned to 48 phyla, with Proteobacteria, Acidobacteriota, and Actinobacteriota being the dominant phyla. The fungal reads were assigned to seven phyla, and Ascomycota was the predominant phylum detected in most groups. The four dominant phyla were categorized as keystone taxa in the co-occurrence networks, suggesting that they may be involved in soil disease suppression and nutrient mobility. Bacterial co-occurrence networks had fewer edges, lower average degree, and lower density at YL1, HQ1, HQ2, BC, and DL than fungal networks, creating less intricate rhizosphere network patterns. Furthermore, the bacterial and fungal communities showed strong distance decay of similarity across the sampling range. Overall, this study improves our understanding of regulating rhizosphere microbial communities in soil systems and also provides potential production strategies for planting .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797738PMC
http://dx.doi.org/10.3389/fmicb.2022.1055638DOI Listing

Publication Analysis

Top Keywords

microbial community
12
microbial communities
8
reads assigned
8
assigned phyla
8
dominant phyla
8
co-occurrence networks
8
microbial
5
community diversity
4
diversity function
4
function analysis
4

Similar Publications