Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Canadian NTRK (CANTRK) study is an interlaboratory comparison ring study to optimize testing for neurotrophic receptor tyrosine kinase (NTRK) fusions in Canadian laboratories. Sixteen diagnostic laboratories used next-generation sequencing (NGS) for NTRK1, NTRK2, or NTRK3 fusions. Each laboratory received 12 formalin-fixed, paraffin-embedded tumor samples with unique NTRK fusions and two control non-NTRK fusion samples (one ALK and one ROS1). Laboratories used validated protocols for NGS fusion detection. Panels included Oncomine Comprehensive Assay v3, Oncomine Focus Assay, Oncomine Precision Assay, AmpliSeq for Illumina Focus, TruSight RNA Pan-Cancer Panel, FusionPlex Lung, and QIAseq Multimodal Lung. One sample was withdrawn from analysis because of sample quality issues. Of the remaining 13 samples, 6 of 11 NTRK fusions and both control fusions were detected by all laboratories. Two fusions, WNK2::NTRK2 and STRN3::NTRK2, were not detected by 10 laboratories using the Oncomine Comprehensive or Focus panels, due to absence of WNK2 and STRN3 in panel designs. Two fusions, TPM3::NTRK1 and LMNA::NTRK1, were challenging to detect on the AmpliSeq for Illumina Focus panel because of bioinformatics issues. One ETV6::NTRK3 fusion at low levels was not detected by two laboratories using the TruSight Pan-Cancer Panel. Panels detecting all fusions included FusionPlex Lung, Oncomine Precision, and QIAseq Multimodal Lung. The CANTRK study showed competency in detection of NTRK fusions by NGS across different panels in 16 Canadian laboratories and identified key test issues as targets for improvements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmoldx.2022.12.004DOI Listing

Publication Analysis

Top Keywords

ntrk fusions
16
detected laboratories
12
fusions
10
ring study
8
study optimize
8
detection ntrk
8
cantrk study
8
canadian laboratories
8
fusions control
8
oncomine comprehensive
8

Similar Publications

Although a diagnosis of anaplastic thyroid carcinoma (ATC) can be rendered on fine needle aspiration (FNA), a core needle biopsy is often performed to provide sufficient material for immunohistochemical and molecular analysis. Rendering an ATC diagnosis on core biopsy can be challenging due to limited material. It is crucial that other diagnostic entities in the differential, such as poorly differentiated thyroid carcinoma, medullary thyroid carcinoma, lymphoma, metastases, and NUT carcinoma (among others), are considered and that immunohistochemistry (IHC) is employed judiciously to support the diagnosis.

View Article and Find Full Text PDF

Personalized therapy in metastatic colorectal cancer: biomarker-driven use of biologics.

Expert Opin Biol Ther

September 2025

Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.

Introduction: Metastatic colorectal cancer (mCRC) remains a leading cause of cancer mortality worldwide, with limited long-term survival despite therapeutic advances. The increasing understanding of its molecular heterogeneity has paved the way for precision medicine approaches aiming to optimize treatment efficacy and reduce unnecessary toxicity.

Areas Covered: This review provides an in-depth analysis of the current and emerging molecular targets in mCRC, including RAS, BRAF, HER2, and microsatellite instability.

View Article and Find Full Text PDF

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, with proto-oncogene, receptor tyrosine kinase (c-kit), or PDGFRα mutations detected in around 85% of cases. GISTs without c-kit or platelet-derived growth factor receptor alpha (PDGFRα) mutations are considered wild-type (WT). Recently, some molecular alterations, including neurotrophic tyrosine receptor kinase (NTRK) fusions, have been reported in very few cases of WT GISTs.

View Article and Find Full Text PDF

Lipofibromatosis Revisited.

In Vivo

August 2025

Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.

Lipofibromatosis (LPF) is a locally aggressive but non-metastasizing mesenchymal tumor that primarily occurs in the hands and feet of infants and young children. It typically presents as a slow-growing, painless, poorly demarcated subcutaneous mass. Magnetic resonance imaging reveals the lesion to be a poorly defined mass with a mixture of adipose and fibrous components.

View Article and Find Full Text PDF