Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The transition-metal-free direct cross-coupling between polyfluoroarenes and benzyl chlorides is reported. In this strategy, a variety of polyfluoro di-, tri- and tetra-arylmethanes was efficiently prepared with good to excellent yields in the presence of Mg turnings via a one-pot procedure. Significantly, this method provides a general approach for the synthesis of polyfluorinated polyarylmethanes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202203427DOI Listing

Publication Analysis

Top Keywords

direct cross-coupling
8
cross-coupling polyfluoroarenes
8
polyfluoroarenes benzyl
8
benzyl chlorides
8
transition-metal-free synthesis
4
synthesis polyfluoro-polyarylmethanes
4
polyfluoro-polyarylmethanes direct
4
chlorides transition-metal-free
4
transition-metal-free direct
4
chlorides reported
4

Similar Publications

Convergent Paired Electrolysis Enables Electrochemical Halogen-Atom Transfer-Mediated Alkyl Radical Cross-Coupling.

J Am Chem Soc

September 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

The direct cross-coupling of unactivated alkyl halides with aryl or heteroaryl partners remains a fundamental challenge in synthetic chemistry due to their inertness and propensity for side reactions. Herein, we report a transition-metal-free electrochemical halogen-atom transfer strategy that enables efficient alkyl radical cross-coupling via convergent paired electrolysis. In this system, anodically generated α-aminoalkyl radicals mediate the activation of alkyl iodides, while aryl/heteroaryl aldehydes or nitriles undergo cathodic reduction to afford persistent ketyl radical anions or aryl radical anions.

View Article and Find Full Text PDF

Advances in the Catalytic Asymmetric Synthesis of Chiral α-Aryl Ketones.

Chem Rec

September 2025

Department of Chemistry, St. Thomas College Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India.

An α-aryl-substituted enantioenriched ketone is a valuable building block for the production of both natural and medicinal compounds. Research into their asymmetric synthesis can be challenging yet rewarding because of the need to control regio-, chemo-, and enantioselectivity carefully. A wide range of catalytic strategies has been developed during the past three decades to gain access to these favored motifs.

View Article and Find Full Text PDF

Radical-radical cross-coupling offers an efficient strategy for constructing C-S bonds, yet existing methods typically rely on stoichiometric oxidants or metal catalysts. The lack of sustainable approaches for C(sp)-H sulfenylation at the C9 position of xanthene derivatives limits their functionalization. Herein, we developed an electrochemical method enabling direct C(sp)-H sulfenylation/selenylation of oxa/thia/aza-xanthenes under metal- and chemical-oxidant-free conditions.

View Article and Find Full Text PDF

Nanoparticles exhibit unique catalytic properties that are highly dependent on their size and shape, influencing reaction rates, selectivity, and efficiency. Identifying the structural effects that achieve a high catalytic performance is critical to a wide range of applications, from energy conversion to environmental remediation. High-throughput screening (HTS) methods, particularly desorption electrospray ionization mass spectrometry (DESI-MS), offer a powerful approach for rapidly assessing the catalytic performance of nanoparticles with varying sizes and shapes.

View Article and Find Full Text PDF

Recent Advances in Microenvironment Engineering for Selective Electrochemical C-N Coupling.

ChemSusChem

September 2025

National Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.

Electrochemical C-N coupling via the coreduction of CO and nitrogenous species (N/NO) presents a sustainable route to synthesize value-added C-N compounds under mild conditions. However, competing pathways and mismatched intermediate kinetics hinder the selective formation of products like urea, amines, and amides. Recent advances reveal that rational modulation of the electrochemical microenvironment can effectively steer reaction pathways and stabilize coupling-relevant intermediates.

View Article and Find Full Text PDF