Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Self-assembling hydrogels are receiving great attention for both biomedical and technological applications. Self-assembly of protein/peptides as well as organic molecules is commonly induced in response to external triggers such as changes of temperature, concentration, or pH. An interesting strategy to modulate the morphology and mechanical properties of the gels implies the use of metal ions, where coordination bonds regulate the dynamic cross-linking in the construction of hydrogels, and coordination geometries, catalytic, and redox properties of metal ions play crucial roles. This review aims to discuss recent insights into the supramolecular assembly of hydrogels involving metal ions, with a focus on self-assembling peptides, as well as applications of metallogels in biomedical fields including tissue engineering, sensing, wound healing, and drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.3474DOI Listing

Publication Analysis

Top Keywords

metal ions
16
modulation hydrogel
4
hydrogel networks
4
metal
4
networks metal
4
ions
4
ions self-assembling
4
self-assembling hydrogels
4
hydrogels receiving
4
receiving great
4

Similar Publications

Precise Modulation of Zeolite Acidity by Alkali Metal Ions for Enhancing Catalytic Performance in CO Cycloaddition Reactions.

Inorg Chem

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.

The CO cycloaddition route is an effective way to achieve efficient conversion and utilization of CO. Zeolites with diverse topologies and tunable acidic sites can efficiently promote the cycloaddition reaction of CO with epoxides. The exchangeable cations in zeolites have a great influence on the performance of the CO cycloaddition, but there are few studies on it.

View Article and Find Full Text PDF

Towards durable photocatalytic seawater splitting: design strategies and challenges.

Chem Commun (Camb)

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070

Photocatalytic seawater splitting (PSWS), which utilizes abundant solar and ocean resources, is one of the most promising technologies for sustainable hydrogen production. However, the complex composition of seawater significantly limits the durability and activity of photocatalysts. In this review, we first identify the primary factors that contribute to photocatalyst deactivation during PSWS, including chloride induced corrosion and loss of active sites, and light shielding caused by precipitation of metal cation salts.

View Article and Find Full Text PDF

Chemically Lithiated Poly(vinylidene difluoride) with In Situ Generated LiF Nanofiller as Hybrid Artificial Layer for Stable Lithium Metal Anodes.

Small

September 2025

Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer  poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.

View Article and Find Full Text PDF

Metal ions play a vital role in the health of the modern human body, but deficiencies in mineral elements have created health risks worldwide. However, mineral supplements currently available on the market are very limited due to poor solubility, low bioavailability, and the possibility of adverse effects on the gastrointestinal tract. In contrast, protein-derived metal-chelating peptides have received a lot of attention because of their stability, safety, and very high bioavailability.

View Article and Find Full Text PDF

The design of a rare combination of interpenetrated and catenated 3D+2D→3D MOF {[Cd(dim)(dht)(HO)](Sol)} (1), with a unique network and extreme pH stability, has been developed for exceptional ionic conduction across a wide range of temperature and humidity conditions. The bare pore derivative of 1 (1') features remarkable structural flexibility and large pores accessible to encapsulate molecules such as NH, HCl, and KOH, enabling it to function as an efficient conductor for both proton and hydroxide ions. 1' demonstrates substantial thermal-influenced proton conductivity of 4.

View Article and Find Full Text PDF