Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: To determine Streptococcus agalactiae genes responsible for causing neonatal meningitis.

Background: Streptococcus agalactiae strain 2603 V/R is causative agent of neonatal meningitis, maternal infection and sepsis in young children. World health organisation reported high burden of new born death caused by this bacterium. Streptococcus agalactiae colonizing epithelial cells of vagina and endothelial cells have high resistance to available antibiotic drugs which makes it essential to determine new drug targets.

Objectives: To compare the genome of selected strain with the non-pathogenic strains of streptococcus and identify the virulent and antibiotic resistant genes for adaptation in host environment.

Method: The whole genome of human pathogen Streptococcus agalactiae strain 2603 V/R was analysed and compared with Streptococcus dysgalactiae strains using visualization and annotation tools. Genomic islands, mobile genetic elements, virulent and resistant genes were studied.

Results: Genetically pathogenic strain is most similar to Streptococcus dysgalactiae subsp. equisimilis strain NCTC 7136. Comparative analysis revealed the importance of capsular polysaccharides and surface proteins responsible for avoiding immune system attachment to host epithelial cells and virulent behaviour. High number of genes coding for antibiotics resistance may provide a competitive advantage for survival of pathogenic Streptococcus agalactiae strain 2603 V/R in its niche.

Conclusions: The comparative analysis of pathogenic strain Streptococcus agalactiae with non-pathogenic strains of Streptococcus dysgalactiae provided new insights in pathogenicity that could aid in recognization for new regions and genes for development of new drug development strategies considering presence of high number of resistance genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2022.105398DOI Listing

Publication Analysis

Top Keywords

streptococcus agalactiae
24
agalactiae strain
12
strain 2603 v/r
12
streptococcus dysgalactiae
12
streptococcus
11
identify virulent
8
causing neonatal
8
neonatal meningitis
8
epithelial cells
8
non-pathogenic strains
8

Similar Publications

Streptococcosis, caused by , is a significant disease in tilapia farming that results in substantial economic losses. While vaccination is the most effective method for prevention, current vaccines face challenges when administered orally or through immersion, primarily due to poor absorption and degradation in the fish's digestive system. Nanotechnology offers new ways to improve vaccine delivery and effectiveness.

View Article and Find Full Text PDF

This study aims to determine the molecular features and antimicrobial resistance of (Group B streptococcus, GBS) causing invasive and noninvasive infections in Korean adults. Sequence type (ST), capsular serotype, pilus island typing, and antimicrobial susceptibility were analyzed for GBS isolates obtained at a hospital laboratory that processed the primary clinical specimens collected from Korean adults between 2021 and 2024. Among the 90 isolates, Serotype VIII (34.

View Article and Find Full Text PDF

Unlabelled: Group B Streptococcus (GBS), a common colonizer of the human genital and gastrointestinal tracts, is a leading cause of neonatal bacterial meningitis, which can lead to severe neurological complications. The hypervirulent serotype III, sequence type 17 (ST-17) strain COH1 is strongly associated with late-onset disease due to its unique set of virulence factors. However, genetic manipulation of ST-17 strains is notoriously challenging, limiting the ability to study key pathogenic genes.

View Article and Find Full Text PDF

Evidence of a novel sublineage of in elephants from zoo populations in Germany.

Microb Genom

September 2025

Department of Veterinary Medicine, Hessian State Laboratory, Giessen, Germany.

research primarily centres on investigating human and bovine infections, although this pathogen also can be carried and cause infections in a wider range of animal species. Moreover, infections with are posing significant health implications, and recent studies furthermore are highlighting a potential zoonotic risk. Despite the relatively frequent isolation of from elephants, only a few reports document infections in wild and zoo populations.

View Article and Find Full Text PDF

Effect of maternal HIV status on the early neonatal microbiome.

J Pediatric Infect Dis Soc

September 2025

Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, U. S. A.

Microbiome disruption is a proposed mechanism for the observed differences in child health outcomes by maternal HIV status, but the early neonatal microbiome of HIV-exposed (HE) newborns is not well studied. We used 16S ribosomal ribonucleic acid sequencing to analyze the microbiome composition of nasal, skin, and rectal samples collected ≤72 hours after birth from 57 hospitalized neonates in Botswana, 33% of whom were HE. Beta diversity differed by anatomic compartment (p=.

View Article and Find Full Text PDF