Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Extreme temperature and precipitation events are the primary triggers of hazards, such as heat waves, droughts, floods, and landslides, with localized impacts. In this sense, the finer grids of Earth System models (ESMs) could play an essential role in better estimating extreme climate events. The performance of High Resolution Model Intercomparison Project (HighResMIP) models is evaluated using the Expert Team on Climate Change Detection and Indices (ETCCDI) over the 1981-2014 period and future changes (2021-2050) under Shared Socioeconomic Pathway SSP5-8.5, over ten regions in Latin America and the Caribbean. The impact of increasing the horizontal resolution in estimating extreme climate variability on a regional scale is first compared against reference gridded datasets, including reanalysis, satellite, and merging products. We used three different groups based on the resolution of the model's grid (): (i) low (0.8° ≤  ≤ 1.87°), (ii) intermediate (0.5° ≤  ≤ 0.7°), and (iii) high (0.23° ≥  ≤ 0.35°). Our analysis indicates that there was no clear evidence to support the posit that increasing horizontal resolution improves model performance. The ECMWF-IFS family of models appears to be a plausible choice to represent climate extremes, followed by the ensemble mean of HighResMIP in their intermediate resolution. For future climate, the projections indicate a consensus of temperature and precipitation climate extremes increase across most of the ten regions. Despite the uncertainties presented in this study, climate models have been and will continue to be an important tool for assessing risk in the face of extreme events.

Supplementary Information: The online version contains supplementary material available at 10.1007/s41748-022-00337-7.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762667PMC
http://dx.doi.org/10.1007/s41748-022-00337-7DOI Listing

Publication Analysis

Top Keywords

climate extremes
12
climate
8
future climate
8
latin america
8
america caribbean
8
earth system
8
system models
8
high resolution
8
resolution model
8
model intercomparison
8

Similar Publications

This viewpoint examines the inadequate protection of informal workers against climate change hazards under new legislation in Ecuador. The recent Executive Decree No. 255 (Regulation on Occupational Safety and Health), enacted in May 2024, explicitly excludes informal sector workers, who are at elevated risk due to climate change impacts such as rising extreme temperatures.

View Article and Find Full Text PDF

Climate change is causing a significant increase in the number of compound extreme events that pose significantly greater threats to public safety. Chongqing is a megacity in southwestern China that took the brunt of temporally compounding events (TCEs) in the summer of 2022. We developed an approach based on the Intergovernmental Panel on Climate Change (IPCC) risk framework to assess the public health risks posed by TCEs.

View Article and Find Full Text PDF

Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.

View Article and Find Full Text PDF

Evolutionary consequences of extreme climate events.

Curr Biol

September 2025

Institute at Brown for Environment and Society, Brown University, Providence, RI, USA.

Extreme climate events, such as storms, droughts or cold waves, wreak havoc on human and natural systems, but they can also catalyze rapid evolutionary change. Because such extreme events have historically been rare and difficult to forecast, studies of their biological impacts have mostly been serendipitous, limiting our understanding of their evolutionary consequences. However, with extreme climate events now increasing in frequency and severity due to human-induced global change, the opportunity - and need - to study their evolutionary consequences has grown.

View Article and Find Full Text PDF

Extremely high toxicity of gaseous intermediate/semi volatile organic compounds emitted from typical incomplete biomass burning in China.

J Hazard Mater

September 2025

Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China.

Incomplete biomass burning emits complex mixture of gaseous and particulate organic pollutants, yet their chemical speciation and toxicity have not been fully identified. This study profiled the organic fingerprinting primarily emitted from typical incomplete biomass burning through nontargeted analysis and estimated their toxic potencies. Gaseous organics exhibited 2.

View Article and Find Full Text PDF