A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of highly potent and specific AKR1C3 inhibitors to restore the chemosensitivity of drug-resistant breast cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in multiple hormone related cancers, such as breast and prostate cancer, and is correlated with tumor development and aggressiveness. As a phase I biotransformation enzyme, AKR1C3 catalyzes the metabolic processes that lead to resistance to anthracyclines, the "gold standard" for breast cancer treatment. Novel approaches to restore the chemotherapy sensitivity of breast cancer are urgently required. Herein, we developed a new class of AKR1C3 inhibitors that demonstrated potent inhibitory activity and exquisite selectivity for closely related isoforms. The best derivative 27 (S19-1035) exhibits an IC value of 3.04 nM for AKR1C3 and >3289-fold selectivity over other isoforms. We determined the co-crystal structures of AKR1C3 with three of the inhibitors, providing a solid foundation for further structure-based drug optimization. Co-administration of these AKR1C3 inhibitors significantly reversed the doxorubicin (DOX) resistance in a resistant breast cancer cell line. Therefore, the novel AKR1C3 specific inhibitors developed in this work may serve as effective adjuvants to overcome DOX resistance in breast cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.115013DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
akr1c3 inhibitors
12
akr1c3
8
cancer treatment
8
dox resistance
8
breast
6
cancer
6
inhibitors
5
development highly
4
highly potent
4

Similar Publications