Spatio-temporal delivery of both intra- and extracellular toll-like receptor agonists for enhancing antigen-specific immune responses.

Acta Pharm Sin B

Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For cancer immunotherapy, triggering toll-like receptors (TLRs) in dendritic cells (DCs) can potentiate antigen-based immune responses. Nevertheless, to generate robust and long-lived immune responses, a well-designed nanovaccine should consider different locations of TLRs on DCs and co-deliver both antigens and TLR agonist combinations to synergistically induce optimal antitumor immunity. Herein, we fabricated lipid-polymer hybrid nanoparticles (LPNPs) to spatio-temporally deliver model antigen ovalbumin (OVA) on the surface of the lipid layer, TLR4 agonist monophosphoryl lipid A (MPLA) within the lipid layer, and TLR7 agonist imiquimod (IMQ) in the polymer core to synergistically activate DCs by both extra- and intra-cellular TLRs for enhancing adaptive immune responses. LPNPs-based nanovaccines exhibited a narrow size distribution at the mean diameter of 133.23 nm and zeta potential of -2.36 mV, showed a high OVA loading (around 70.83 μg/mg) and IMQ encapsulation efficiency (88.04%). Our data revealed that LPNPs-based nanovaccines showed great biocompatibility to immune cells and an excellent ability to enhance antigen internalization, thereby promoting DCs maturation and cytokines production. Compared to Free OVA, OVA-LPNPs promoted antigen uptake, lysosome escape, depot effect and migration to secondary lymphatic organs. immunization showed that IMQ-MPLA-OVA-LPNPs with dual agonists induced more powerful cellular and humoral immune responses. Moreover, prophylactic vaccination by IMQ-MPLA-OVA-LPNPs effectively suppressed tumor growth and increased survival efficacy. Hence, the nanovaccines we fabricated can effectively co-deliver antigens and different TLR agonists and realize coordinated stimulation of DCs in a spatio-temporal manner for enhanced immune responses, which provides a promising strategy for cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764069PMC
http://dx.doi.org/10.1016/j.apsb.2022.05.032DOI Listing

Publication Analysis

Top Keywords

immune responses
24
cancer immunotherapy
8
co-deliver antigens
8
antigens tlr
8
lipid layer
8
lpnps-based nanovaccines
8
immune
7
responses
6
dcs
5
spatio-temporal delivery
4

Similar Publications

Multi-omic analysis reveals a key BCAT1 role in mTOR activation by B-cell receptor and TLR9.

J Clin Invest

September 2025

Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, United States of America.

B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof.

View Article and Find Full Text PDF

Synovial MS4A4A correlates with inflammation and counteracts response to corticosteroids in arthritis.

Proc Natl Acad Sci U S A

September 2025

Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.

MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.

View Article and Find Full Text PDF

Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR mice during infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

Evaluation of subsp. antigens capable of stimulating host IRG-47 release identifies Mmm604, Mmm605, and Mmm606 as potential subunit vaccine antigens.

Infect Immun

September 2025

National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.

View Article and Find Full Text PDF