98%
921
2 minutes
20
A set of aromatic copolyimides was obtained by reaction of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), and mixtures of the diamines 1,4-bis(4-amino-2-trifluoromethylphenoxy)-2,5-di--butylbenzene (CFTBAPB) and 3,5-diamino benzoic acid (DABA). These polymers were characterized and compared with the homopolymer derived from 6FDA and CFTBAPB. All copolyimides showed high molecular weight values and good mechanical properties. The presence of carboxylic groups in these copolymers allowed their chemical crosslinking by reaction with 1,4-butanediol. Glass transition temperatures (Tg) were higher than 260 °C, showing the non-crosslinked copolyimides had the highest Tg values. Degradation temperature of crosslinked copolyimides was lower than their corresponding non-crosslinked ones. Mechanical properties of all polymers were good, and thus, copolyimide (precursor, and crosslinked ones) films could be tested as gas separation membranes. It was observed that CO permeability values were around 100 barrer. Finally, the plasticization resistance of the crosslinked material having a large number of carboxylic groups was excellent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781430 | PMC |
http://dx.doi.org/10.3390/polym14245517 | DOI Listing |
Small
September 2025
College of Environment and Climate, Jinan University, Guangzhou, 511443, China.
Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.
View Article and Find Full Text PDFJ Exp Biol
September 2025
Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
Dissolved oxygen (DO) dramatically impacts the habitat use of many aquatic animals, particularly for air-breathing animals that rely on 'physical gills' for respiration while submerged. Invertebrates that use bubbles as physical gills directly uptake DO from the water for respiration. However, no vertebrate animals have yet been documented using physical gills.
View Article and Find Full Text PDFWaste Manag
September 2025
Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
As one of the major sources of greenhouse gas (GHG) emissions, the municipal solid waste (MSW) management system was regarded as a key contributor to the construction of a low-carbon society. Understanding the evolution of waste treatment facilities and the corresponding GHG emissions was essential for assessing the low-carbon competitiveness of local communities. In this study, facility-level data were used to estimate GHG emissions from the waste management system in the Yangtze River Delta (YRD) and analyze their temporal and spatial variations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
The Steve Sanghi College of Engineering, Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona 86011, United States.
This study investigates the HO and CO sorption behavior of two chemically distinct polystyrene-divinylbenzene-based ion exchange sorbents: a primary amine and a permanently charged strong base quaternary ammonium (QA) group with (bi)carbonate counter anions. We compare their distinct interactions with HO and CO through simultaneous thermal gravimetric, calorimetric, gas analysis, and molecular modeling approaches to evaluate their performance for dilute CO separations like direct air capture. Thermal and hybrid (heat + low-temperature hydration) desorption experiments demonstrate that the QA-based sorbent binds both water and CO more strongly than the amine counterparts but undergoes degradation at moderate temperatures, limiting its compatibility with thermal swing regeneration.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Nontargeted Separations Laboratory, Chemistry Department, William & Mary, Integrated Science Center 1053, 540 Landrum Drive, Williamsburg, Virginia 23188, United States.
Fingerprints are routinely used as evidence in forensic investigations. Fingermarks, any mark left by a donor whether a complete print or not, include sweat and oil excreted by the donor. The chemical components of fingermarks are typically analyzed by gas chromatography-mass spectrometry (GC-MS).
View Article and Find Full Text PDF