98%
921
2 minutes
20
Conventional anticancer treatments, such as radiotherapy and chemotherapy, have significantly improved cancer therapy. Nevertheless, the existing traditional anticancer treatments have been reported to cause serious side effects and resistance to cancer and even to severely affect the quality of life of cancer survivors, which indicates the utmost urgency to develop effective and safe anticancer treatments. As the primary focus of cancer nanotheranostics, nanomaterials with unique surface chemistry and shape have been investigated for integrating cancer diagnostics with treatment techniques, including guiding a prompt diagnosis, precise imaging, treatment with an effective dose, and real-time supervision of therapeutic efficacy. Several theranostic nanosystems have been explored for cancer diagnosis and treatment in the past decade. However, metal-based nanotheranostics continue to be the most common types of nonentities. Consequently, the present review covers the physical characteristics of effective metallic, functionalized, and hybrid nanotheranostic systems. The scope of coverage also includes the clinical advantages and limitations of cancer nanotheranostics. In light of these viewpoints, future research directions exploring the robustness and clinical viability of cancer nanotheranostics through various strategies to enhance the biocompatibility of theranostic nanoparticles are summarised.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780934 | PMC |
http://dx.doi.org/10.3390/molecules27248659 | DOI Listing |
Biomed Pharmacother
September 2025
Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Polyploidy, a conserved mechanism involved in normal development and tissue homeostasis, plays a paradoxical role in cancer by facilitating both tumor progression and therapeutic vulnerability. Although polyploidization may confer survival advantages to cancer cells, its controlled induction could represent an effective anticancer strategy. Aurora B kinase, a critical regulator of mitosis, plays a pivotal role in ensuring chromosomal integrity and preventing polyploidy.
View Article and Find Full Text PDFEur J Med Chem
August 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, Anhui, PR China. Electronic address:
Cancer remains a leading global cause of mortality, with treatment efficacy often compromised by drug resistance, highlighting the urgent need for novel targeted therapies. The enzyme fructose-2,6-bisphosphatase 4 (PFKFB4) governs glycolytic flux by modulating fructose-2,6-bisphosphate (F2,6BP) levels. PFKFB4 overexpression has been observed in various cancers and correlates with tumor growth, aggressiveness, and poor prognosis.
View Article and Find Full Text PDFTurk J Pediatr
September 2025
Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
Background: Glucocorticoids remain the primary treatment for acute lymphoblastic leukemia (ALL) in children. However, glucocorticoid-resistant ALL exhibits increased mortality rates. To overcome resistance and improve management strategies, alternative therapeutic agents are required.
View Article and Find Full Text PDFRetina
September 2025
School of Mathematical and Computational Sciences, University of Prince Edward Island, Charlottetown, Canada.
Purpose: Systemically administered anti-cancer VEGF inhibiting therapies can cause severe kidney injury. Intravitreal aflibercept has a greater impact on renal VEGF levels than ranibizumab. We compared the risk of kidney injury among patients receiving intravitreal aflibercept vs.
View Article and Find Full Text PDFInorg Chem
September 2025
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
This study focuses on designing and developing a novel three-dimensional porphyrinic covalent organic framework (3D-Por-COF) to enhance anticancer sono-photodynamic therapy (SPDT). Leveraging the unique structural advantages of 3D COFs, this work addresses the limitations of traditional 2D-Por-COFs, particularly regarding reactive oxygen species (ROS) production and therapeutic efficacy. The newly developed 3D-Por-COF demonstrated significantly higher ROS generation under combined sonodynamic and photodynamic conditions, leading to an improved therapeutic effect against prostate cancer cells.
View Article and Find Full Text PDF