Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatitis B virus (HBV) core antigen (HBc) is a structural protein that forms the viral nucleocapsid and is involved in various steps of the viral replication cycle, but its role in the pathogenesis of HBV infection is still elusive. In this study, we generated a mouse monoclonal antibody (mAb) against HBc and used it in antibody-based in situ biotinylation analysis in order to identify host proteins that interact with HBc. HBc antigen was produced with a wheat germ cell-free protein synthesis system and used to immunize mice. Among the established hybridoma clones, a single clone (mAb #7) was selected and further characterized for its ability in the antibody-based in situ biotinylation analysis to collect host proteins that are in the vicinity of HBc. Using mass spectrometry, we identified 215 HBc-interacting host proteins, three of which bind HBc most significantly under hypoxic conditions. Our results indicate that mAb #7 can be used to systematically identify host proteins that interact with HBc under pathophysiological conditions, and thus may be useful to explore the molecular pathways involved in HBV-induced cytopathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783060PMC
http://dx.doi.org/10.3390/microorganisms10122381DOI Listing

Publication Analysis

Top Keywords

host proteins
16
monoclonal antibody
8
hepatitis virus
8
antibody-based situ
8
situ biotinylation
8
biotinylation analysis
8
identify host
8
proteins interact
8
interact hbc
8
hbc
7

Similar Publications

Degradation during production and delivery is a significant bottleneck in developing biomolecular therapies. Protein cages, formed by engineered variants of lumazine synthase, present an effective strategy for the microbial production and isolation of labile biomolecular therapies. Genetic fusion of the target polypeptide to a cage component protomer ensures its efficient encapsulation within the cage during production in host bacterial cells, thereby protecting it from degradation.

View Article and Find Full Text PDF

Bacteriophages are the most abundant entities on earth and exhibit vast genetic and phenotypic diversity. Exploitation of this largely unexplored molecular space requires identification and functional characterization of genes that act at the phage-host interface. So far, this has been restricted to few model phage-host systems that are amenable to genetic manipulation.

View Article and Find Full Text PDF

Uncovering the evolving arms race between host immunity and HIV-1.

Trends Immunol

September 2025

Department of Life Science, University of Seoul, Seoul, Republic of Korea. Electronic address:

Despite an effective combination of antiretroviral therapy, HIV persists as a lifelong infection and global health threat. The human host equips restriction factors and interferon (IFN)-stimulated genes that target every step of the viral life cycle. However, HIV-1 has evolved a coordinated immune evasion strategy using a limited set of accessory proteins with distinct antagonistic functions.

View Article and Find Full Text PDF

Comparative efficacy and safety of PSCA CAR-engineered Vδ1 γδ T cells for immunotherapy of pancreatic cancer.

J Immunother Cancer

September 2025

Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California, Irvine, California, USA

Background: γδ T cells possess unique immunological features including tissue tropism, major histocompatibility complex-independent antigen recognition, and hybrid T/natural killer cell properties that make them promising candidates for cancer immunotherapy. However, the therapeutic potential of Vδ1 γδ T cells, particularly when engineered with chimeric antigen receptors (CARs), remains underexplored in solid tumors such as pancreatic cancer (PC), largely due to their low abundance in peripheral blood and challenges in ex vivo expansion. This study aims to directly compare the preclinical safety and efficacy among CAR-engineered Vδ1 γδ T cells, Vδ2 γδ T cells, and conventional αβ T cells.

View Article and Find Full Text PDF

Single-Cell Transcriptomic Profiling Reveals Diet-Dependent Dynamics of Glucosinolate Sulfatases Expression and Cellular Origin in the Midgut of Plutella xylostella.

Insect Biochem Mol Biol

September 2025

Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China. Electronic address:

The diamondback moth (Plutella xylostella), a globally destructive pest, has Brassicaceae as its long-term co-evolved host and can also utilize Fabaceae as an alternative field host. The primary differential factor between these plant families is glucosinolates (GLs). Conventional transcriptome data revealed high midgut expression of glucosinolate sulfatases (GSSs) in response to glucosinolates.

View Article and Find Full Text PDF