Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nosocomial infections are serious threats to the entire world in healthcare settings. The major causative agents of nosocomial infections are bacterial pathogens, among which Enterobacteriaceae family member Serratia marcescens plays a crucial role. It is a gram-negative opportunistic pathogen, predominantly affecting patients in intensive-care units. The presence of intrinsic genes in S. marcescens led to the development of resistance to antibiotics for survival. Complete scanning of the proteome, including hypothetical and partially annotated proteins, paves the way for a better understanding of potential drug targets. The targeted protein expressed in E. coli BL21 (DE3) pLysS cells has shown complete resistance to aminoglycoside antibiotic streptomycin (>256 MCG). The recombinant protein was purified using affinity and size-exclusion chromatography and characterized using SDS-PAGE, western blotting, and MALDI-TOF analysis. Free phosphate bound to malachite green was detected at 620 nm, evident of the conversion of adenosine triphosphate to adenosine monophosphate during the adenylation process. Similarly, in the chromatographic assay, adenylated streptomycin absorbed at 260 nm in AKTA (FPLC), confirming the enzyme-catalyzed adenylation of streptomycin. Further, the adenylated product of streptomycin was confirmed through HPLC and mass spectrometry analysis. In conclusion, our characterization studies identified the partially annotated hypothetical protein as streptomycin adenylyltransferase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774460PMC
http://dx.doi.org/10.3390/antibiotics11121722DOI Listing

Publication Analysis

Top Keywords

streptomycin adenylyltransferase
8
nosocomial infections
8
partially annotated
8
streptomycin
6
functional characterization
4
characterization mechanism
4
mechanism mode
4
mode action
4
action putative
4
putative streptomycin
4

Similar Publications

Background: Aminoglycosides are important broad-spectrum antimicrobial agents. When combined with β-lactam drugs, these agents can be used to treat severe infections such as those causing sepsis. Identifying additional resistance mechanisms will guarantee the successful application of aminoglycoside agents in clinical practice.

View Article and Find Full Text PDF

Identification and characterization of four Bacillus species from the intestine of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂), their antagonistic role on common pathogenic bacteria, and effects on intestinal health.

Fish Shellfish Immunol

September 2024

College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong

As an alternative to the criticized antibiotics, probiotics have been adopted for their eco-friendly nature and ability to enhance host growth and immunity. Nevertheless, reports suggest ineffectiveness in commercially available probiotics since most are from non-fish sources; thus, this study was envisaged to isolate and characterize new Bacillus spp. from the gut of hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂) which could serve as potential probiotics.

View Article and Find Full Text PDF

Objectives: Our study aimed to sequence class 1 integrons in uncultured environmental bacterial cells in freshwater from suburban creeks and uncover the taxonomy of their bacterial hosts. We also aimed to characterize integron gene cassettes with altered DNA sequences relative to those from databases or literature and identify key signatures of their molecular evolution.

Methods: We applied a single-cell fusion PCR-based technique-emulsion, paired isolation and concatenation PCR (epicPCR)-to link class 1 integron gene cassette arrays to the phylogenetic markers of their bacterial hosts.

View Article and Find Full Text PDF
Article Synopsis
  • Nosocomial infections pose serious risks in healthcare, with Serratia marcescens being a key bacterial pathogen known for causing infections, particularly in ICUs.
  • The bacteria have developed antibiotic resistance, necessitating a detailed proteome analysis to identify potential drug targets.
  • The study successfully characterized a protein that modifies streptomycin, confirming it as streptomycin adenylyltransferase, which may lead to better understanding and treatment strategies against resistant strains.
View Article and Find Full Text PDF

Antimicrobial resistance is the key threat to global health due to high morbidity and mortality. The alteration of bacterial proteins, enzymatic degradation, and change of membrane permeability towards antimicrobial agents are the key mechanisms of antimicrobial resistance. Based on the current condition, there is an urgent clinical need to develop new drugs to treat these bacterial infections.

View Article and Find Full Text PDF