Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Foraminifera are unicellular, marine organisms that occur worldwide. A very common species in the German Wadden Sea is Elphidium williamsoni. Some foraminifera (such as elphidia) are able to use kleptoplastidy, which allows them to incorporate chloroplasts from their algal food source into their own cell body. The experiments reported here are based on the fact that chlorophyll (a and c) can be detected in the intact cells with spectroscopic methods in the visible spectral range, which allows an indirect investigation of the presence of sequestered chloroplasts. Starving experiments of E. williamsoni in the light (24 h continuous) showed that the greatest decrease in chlorophyll content was recorded within the first 20-30 days. From day 60 on, chlorophyll was hardly detectable. Through subsequent feeding on a renewed algal food source a significant increase in the chlorophyll content in foraminifera was noticed. The degradation of chlorophyll in the dark (24 h continuous darkness) during the starving period was much more complex. Chlorophyll was still detected in the cells after 113 days of starving time. Therefore, we hypotheses that the effect of photoinhibition applies to chloroplasts in foraminifera under continuous illumination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2022.112623DOI Listing

Publication Analysis

Top Keywords

sequestered chloroplasts
8
elphidium williamsoni
8
williamsoni foraminifera
8
algal food
8
food source
8
chlorophyll detected
8
24 h continuous
8
chlorophyll content
8
chlorophyll
6
foraminifera
5

Similar Publications

A plant viral effector disrupts ALD1-OSB1 immunity module to suppress chloroplast defenses.

J Integr Plant Biol

September 2025

State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.

Chloroplasts are central to plant immunity, with the chloroplast-localized protein AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) playing a critical role in producing pipecolic acid (Pip), a key immune signal. However, the regulation of ALD1 and how pathogens evade ALD1-mediated defenses remain poorly understood. Using the geminivirus tomato yellow leaf curl China virus and its associated betasatellite (TYLCCNV/TYLCCNB) as a model, we uncovered a defense mechanism involving organellar single-stranded DNA-binding protein 1 (OSB1), which stabilizes ALD1 and promotes Pip biosynthesis to strengthen immunity.

View Article and Find Full Text PDF

The DNA-binding protein WHIRLY1, sharing structural similarities with ferritin, plays a role in the formation of iron cofactor proteins within chloroplasts. Previous studies indicated that barley plants with a knockdown of HvWHIRLY1 containing a minimal amount of the protein are compromised in chloroplast development and photosynthesis, and get chlorotic leaves when grown at high irradiance. Thereby, the leaves display signs of iron deficiency.

View Article and Find Full Text PDF

Foraminifera are highly diverse rhizarian protists, with some lineages having developed the ability to retain chloroplasts from algal prey (kleptoplasty). Recently, we revealed the evolutionary relationship between kleptoplasty and algal symbiosis in the benthic foraminifera . In this study, we explored fundamental aspects of host-kleptoplast interactions.

View Article and Find Full Text PDF

Photosystem II (PSII) is one of the most thermosensitive components of photosynthetic apparatus in higher plants. Heat-inactivation of PSII may be followed by dissociation of antenna proteins, however, the fate and regulation mechanism of detached antenna proteins during this process remains unclear. Here, we investigate the regulation mechanism of two minor antenna proteins CP24 and CP29 during heat acclimation via the study on a thylakoid protein BCM1.

View Article and Find Full Text PDF

Physiological mechanisms of Carya illinoensis tolerance to manganese stress.

Plant Physiol Biochem

February 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:

Manganese (Mn) is an essential element for plant growth but can be toxic at high levels. Pecan (Carya illinoensis), an important nut-producing species, has been observed to exhibit tolerance to high Mn levels. In this study, pecan seedlings were exposed to a nutrient solution containing either 2 μM (control) or 1000 μM (excess) MnSO to investigate the physiological mechanisms.

View Article and Find Full Text PDF