98%
921
2 minutes
20
Background: Albuminuria is associated with metabolic abnormalities, but these relationships are not well understood. We studied the association of metabolites with albuminuria in Hispanic/Latino people, a population with high risk for metabolic disease.
Methods: We used data from 3736 participants from the Hispanic Community Health Study/Study of Latinos, of which 16% had diabetes and 9% had an increased urine albumin-to-creatinine ratio (UACR). Metabolites were quantified in fasting serum through nontargeted mass spectrometry (MS) analysis using ultra-performance liquid chromatography-MS/MS. Spot UACR was inverse normally transformed and tested for the association with each metabolite or combined, correlated metabolites, in covariate-adjusted models that accounted for the study design. In total, 132 metabolites were available for replication in the Hypertension Genetic Epidemiology Network study ( n =300), and 29 metabolites were available for replication in the Malmö Offspring Study ( n =999).
Results: Among 640 named metabolites, we identified 148 metabolites significantly associated with UACR, including 18 novel associations that replicated in independent samples. These metabolites showed enrichment for D-glutamine and D-glutamate metabolism and arginine biosynthesis, pathways previously reported for diabetes and insulin resistance. In correlated metabolite analyses, we identified two modules significantly associated with UACR, including a module composed of lipid metabolites related to the biosynthesis of unsaturated fatty acids and alpha linolenic acid and linoleic acid metabolism.
Conclusions: Our study identified associations of albuminuria with metabolites involved in glucose dysregulation, and essential fatty acids and precursors of arachidonic acid in Hispanic/Latino population.
Podcast: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_02_08_CJN09070822.mp3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103280 | PMC |
http://dx.doi.org/10.2215/CJN.09070822 | DOI Listing |
Rev Argent Microbiol
September 2025
IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.
Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U
Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Anhui Provincial Key Laboratory of Biological Control, Anhui Agricultural University, Hefei 230036, China. Electronic address:
Microbial consortia, involving two or more microorganisms, have been explored for pest management purposes, despite concerns regarding competitive exclusion among entomopathogenic fungi that may undermine synergistic effects. However, the precise molecular mechanisms governing entomopathogen competition in vivo remain inadequately elucidated. Here, we investigate competitive exclusion dynamics between two prominent entomopathogens, Metarhizium robertsii and Beauveria bassiana.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China. Electronic address:
The four-and-a-half LIM domain protein 2 (FHL2) is a conserved transcriptional co-regulator critical for vertebrate development and metabolism, yet its roles in arthropods remain poorly understood. Here, we report the functional characterization of LmFHL2 in the migratory locust Locusta migratoria, a devastating pest reliant on precise molting cycles for growth and swarming. Phylogenetic and expression analyses revealed high conservation of LmFHL2 across insects, with predominant expression in integument and gut tissues.
View Article and Find Full Text PDF