Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Golgi complex is the central hub of the secretory pathway. In mammalian cells, it is formed by stacks of flattened cisternae organized in a continuous membrane system, the Golgi ribbon, located near the centrosome. During G2, the Golgi ribbon is disassembled into isolated stacks that, at the onset of mitosis, are further fragmented into small tubular-vesicular clusters that disperse throughout the cytoplasm. Here, we describe a set of methods to study the Golgi complex in different phases of the cell cycle, drawing attention to reproducing the mitotic Golgi fragmentation to gain knowledge and acquire the skills to study the mechanisms that regulate mitotic Golgi reorganization as well as its biological significance. The investigations based on these assays have been instrumental in understanding that Golgi disassembly is not only a consequence of mitosis but is also required for mitotic entry and cell division.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2639-9_21DOI Listing

Publication Analysis

Top Keywords

golgi ribbon
12
golgi
8
golgi complex
8
mitotic golgi
8
vitro methods
4
methods investigate
4
investigate disassembly
4
disassembly golgi
4
ribbon g2-m
4
g2-m transition
4

Similar Publications

Alterations in the structure of the Golgi apparatus play a pivotal role in cancer progression and invasion. A better understanding of how Golgi morphology regulates the metastatic potential of cancer cells could help identify potential treatment strategies. In this study, we investigated how specific structural variations in the Golgi, particularly fragmentation and condensation, influence the malignancy of gastric cancer using human cell lines, xenograft mouse models, and human patient tissue samples.

View Article and Find Full Text PDF

Aluminum exposure disturbs epigenetic modification and organelle function during early embryo development.

Chem Biol Interact

September 2025

Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for National

Aluminum is a lightweight and corrosion-resistant metal element that is widely used in industries, construction, food, and pharmaceuticals, and it can adversely affect multiple organ systems including the nervous system, skeletal system, reproductive system, blood system, and immune system. In present study, we investigated the effects of aluminum exposure on mammalian embryo development. Our data demonstrate that aluminum exposure induces mouse early embryo development defects, including those at the zygotes and 2-cell stages, causing a decrease in general transcription activity.

View Article and Find Full Text PDF

Imidacloprid, a neonicotinoid pesticide widely used for controlling agricultural pests, is known to exert toxic effects on non-target aquatic organisms. This study aimed to investigate the toxicological impact of imidacloprid and the potential protective effect of an antioxidant, ascorbic acid, in the freshwater snail Melanopsis praemorsa. Eight experimental groups were established: two controls; three groups exposed to imidacloprid at concentrations of 4.

View Article and Find Full Text PDF

Unlabelled: Type 1 diabetes (T1D) is caused by the selective autoimmune ablation of pancreatic β-cells. Emerging evidence reveals β-cell secretory dysfunction arises early in T1D development and may contribute to diseases etiology; however, the underlying mechanisms are not well understood. Our data reveal that proinflammatory cytokines elicit a complex change in the β-cell's Golgi structure and function.

View Article and Find Full Text PDF

LDL transcytosis passes through the trans-Golgi network and requires Rab10.

J Lipid Res

September 2025

Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Department of Medicine and the Interdepartmental Division of Critical Care Med

Atherosclerosis begins with the subendothelial retention of low-density lipoproteins (LDL) from the circulation. While LDL transcytosis across the endothelium is mediated by SR-BI and ALK1 and is usually independent of LDLR, the intracellular mechanisms and route of LDL transcytosis remain unclear. Using total internal reflection fluorescence microscopy in LDLR-depleted human coronary artery endothelial cells (HCAECs), we found that LDL transcytosis can proceed both directly as well as indirectly from an intracellular compartment.

View Article and Find Full Text PDF