98%
921
2 minutes
20
Water quality guarantee in remote areas necessitates the development of portable, sensitive, fast, cost-effective, and easy-to-use water quality detection methods. The current work reports on a microfluidic paper-based analytical device (μPAD) integrated with a smartphone app for the simultaneous detection of cross-type water quality parameters including pH, Cu(II), Ni(II), Fe(III), and nitrite. The shapes, baking time, amount, and ratios of reaction reagent mixtures of wax μPAD were optimized to improve the color uniformity and intensity effectively. An easy-to-use smartphone app was established for recording, analyzing, and directly reading the colorimetric signals and target concentrations on μPAD. The results showed that under the optimum conditions, the current analytical platform has reached the detection limits of 0.4, 1.9, 2.9, and 1.1 ppm for nitrite, Cu(II), Ni(II), and Fe(III), respectively, and the liner ranges are 2.3-90 ppm (nitrite), 3.8-400 ppm (Cu(II)), 2.9-1000 ppm (Ni(II)), 2.8-500 ppm (Fe(III)), and 5-9 (pH). The proposed portable smartphone-app integrated μPAD detection system was successfully applied to real industrial wastewater and river water quality monitoring. The proposed method has great potential for field water quality detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730490 | PMC |
http://dx.doi.org/10.1021/acsomega.2c05938 | DOI Listing |
PLoS One
September 2025
The Institute of Port Information Digitalization, China Liaoning Port Group Co. Ltd., Dalian, Liaoning, China.
Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.
Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.
PLoS One
September 2025
Bureau of Qinghai Environmental Geological Prospecting, Xi'ning, China.
This study focuses on mineral groundwater in alpine regions and its sustainable exploitation. The Tongde basin on Tibetan Plateau was investigated to reveal the hydrochemistry and formation of mineral groundwater in alpine basins and its sustainable development under anthropogenic disturbances. The results show that groundwater there is characterized by enriched strontium, with concentrations in the range of 0.
View Article and Find Full Text PDFSoc Work Public Health
September 2025
School of Social Work, Jackson State University, Jackson, Mississippi, USA.
In 2021, Jackson, Mississippi, received national attention after a winter storm caused the failure of operations at the city's largest water treatment facility. Years of neglect to a crumbling infrastructure triggered the Jackson water crisis, leaving residents without clean and reliable access to water. Predating any one administration, Black and low-income residents had long raised concerns about excessive water bills, broken water mains, poor water quality, and deterioration of the city's water system.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes 6, 41012, Seville, Spain.
Marine ecosystems, particularly estuaries, are increasingly threatened by anthropogenic pressures. The Odiel Estuary has suffered severe contamination from acid mine drainage and industrial activities. Since 1986, mitigation efforts have been implemented, yet their long-term ecological effectiveness remains under-evaluated.
View Article and Find Full Text PDF