Leveraging Machine Learning Techniques to Forecast Chronic Total Occlusion before Coronary Angiography.

J Clin Med

Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, 2 Anzhen Road, Chaoyang District, Beijing 100029, China.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Chronic total occlusion (CTO) remains the most challenging procedure in coronary artery disease (CAD) for interventional cardiology. Although some clinical risk factors for CAD have been identified, there is no personalized prognosis test available to confidently identify patients at high or low risk for CTO CAD. This investigation aimed to use a machine learning algorithm for clinical features from clinical routine to develop a precision medicine tool to predict CTO before CAG.

Methods: Data from 1473 CAD patients were obtained, including 1105 in the training cohort and 368 in the testing cohort. The baseline clinical characteristics were collected. Univariate and multivariate logistic regression analyses were conducted to identify independent risk factors that impact the diagnosis of CTO. A CTO predicting model was established and validated based on the independent predictors using a machine learning algorithm. The area under the curve (AUC) was used to evaluate the model.

Results: The CTO prediction model was developed with the training cohort using the machine learning algorithm. Eight variables were confirmed as 'important': gender (male), neutrophil percentage (NE%), hematocrit (HCT), total cholesterol (TC), high-density lipoprotein cholesterol (HDL), ejection fraction (EF), troponin I (TnI), and N-terminal pro-B-type natriuretic peptide (NT-proBNP). The model achieved good concordance indices of 0.724 and 0.719 in the training and testing cohorts, respectively.

Conclusions: An easy-to-use tool to predict CTO in patients with CAD was developed and validated. More research with larger cohorts are warranted to improve the prediction model, which can support clinician decisions on the early discerning CTO in CAD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739483PMC
http://dx.doi.org/10.3390/jcm11236993DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning algorithm
12
chronic total
8
total occlusion
8
cto
8
risk factors
8
cto cad
8
tool predict
8
predict cto
8
cad patients
8

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF