Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell-cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell-cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740252PMC
http://dx.doi.org/10.3390/cells11233775DOI Listing

Publication Analysis

Top Keywords

junction assembly
16
tight junction
12
epithelial morphogenesis
12
cell mechanics
12
ecm stiffness
12
tight junctions
12
assembly epithelial
8
zo-1
7
tight
6
junction
6

Similar Publications

Bidirectional carrier channels boost photocatalytic hydrogen evolution over NiO/CdMnS/TiCT ternary heterojunction.

J Colloid Interface Sci

September 2025

College of Chemistry & Chemical Engineering, Yan'an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000, China. Electronic address:

Hydrogen evolution reaction (HER) driven by solar energy has attracted considerable attention due to its outstanding efficiency, environmental compatibility, and sustainability. Regrettably, the sluggish progress of the HER and the limitations in charge separation efficiency impede its practical photocatalysis. Herein, a two-step electrostatic self-assembly approach is adopted to construct NiO/CdMnS/TiCT (NO/CMS/TCT) ternary heterojunction with bidirectional carrier channels for boost photogenerated separation and oriented carrier accumulation.

View Article and Find Full Text PDF

This article presents a novel perspective on plant embryogenesis, fundamentally differentiating it from the animal embryo model upon which plant models have long been based to discern the genetic and molecular mechanisms. We propose a plant embryonic body plan that aligns developmental and evolutionary insights across all five embryophyte groups (bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms). This conceptual model is grounded in a Reprogramming Potential (RP) involving an activation (RP1+) -suppression (RP1-) switch (RP1+/RP1-), which integrates embryonic development in a stepwise manner across diverse embryophytes.

View Article and Find Full Text PDF

Design principles for construction of DNA-based nanostructures.

Adv Drug Deliv Rev

September 2025

Department of Chemistry, Purdue University, West Lafayette 47907, IN 47907, USA. Electronic address:

DNA nanotechnology, a cutting-edge field that constructs sophisticated DNA-based nanostructures by harnessing the unparalleled programmability of DNA, has evolved into a powerful tool for applications in therapy, biosensing, logic computation, and more. This review outlines the fundamental strategies for constructing DNA nanostructures, beginning with the design of basic building blocks such as small, symmetric tiles (e.g.

View Article and Find Full Text PDF

Apical-basal polarity (ABP) establishment and maintenance is necessary for proper brain development, yet how it is controlled is unclear. Galectin-3 (Gal-3) has been previously implicated in ABP of epithelial cells, and, here, we find that it is apically expressed in human embryonic stem cells (hESCs) during neural induction. Gal-3 blockade disrupts ABP and alters the distribution of junctional proteins in hESC-derived neural rosettes and is rescued by addition of recombinant Gal-3.

View Article and Find Full Text PDF

Presynaptic active zones (AZs) form during synaptogenesis and are critical for ensuring precise synaptic transmission. Although much is known about the development of AZs at the neuromuscular junction, their assembly in the central nervous system (CNS) remains incompletely understood. Here, we demonstrate the mushroom body α/β Kenyon cells in young adults in which new AZs are continuously formed, as a novel system to dissect the sequential AZ assembly in the CNS.

View Article and Find Full Text PDF